Midkine

Last updated

MDK
Protein MDK PDB 1mkc.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases MDK , ARAP, MK, NEGF2, midkine (neurite growth-promoting factor 2), midkine
External IDs OMIM: 162096 MGI: 96949 HomoloGene: 1792 GeneCards: MDK
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)
RefSeq (protein)
Location (UCSC) Chr 11: 46.38 – 46.38 Mb Chr 2: 91.76 – 91.76 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Midkine (MK or MDK), also known as neurite growth-promoting factor 2 (NEGF2), is a protein that in humans is encoded by the MDK gene. [5]

Contents

Midkine is a basic heparin-binding growth factor of low molecular weight, and forms a family with pleiotrophin (NEGF1, 46% homologous with MK). It is a nonglycosylated protein, composed of two domains held by disulfide bridges. It is a developmentally important retinoic acid-responsive gene product strongly induced during mid-gestation, hence the name midkine. Restricted mainly to certain tissues in the normal adult, it is strongly induced during oncogenesis, inflammation and tissue repair.

MK is pleiotropic, capable of exerting activities such as cell proliferation, cell migration, angiogenesis and fibrinolysis. A molecular complex containing receptor-type tyrosine phosphatase zeta (PTPζ), low density lipoprotein receptor-related protein (LRP1), anaplastic leukemia kinase (ALK) and syndecans is considered to be its receptor. [6]

Role in cancer

MK appears to enhance the angiogenic and proliferative activities of cancer cells. [7] The expression of MK (mRNA and protein expression) has been found to be elevated in multiple cancer types, such as neuroblastoma, glioblastoma, Wilms' tumors, thyroid papillary carcinomas, [7] colorectal, liver, ovary, bladder, breast, lung, esophageal, stomach, and prostate cancers. [8] Serum MK in normal individuals is usually less than 0.5-0.6 ng/ml, whereas patients with these malignancies have much higher levels than this. In some cases, these elevated levels of MK also indicate a poorer prognosis of the disease, such as in neuroblastoma, glioblastoma, and bladder carcinomas. [9] In neuroblastoma, for example, the levels of MK are elevated about three times the level in Stage 4 of the cancer (one of the final stages) than they are in Stage 1. [9]

In neuroblastoma, MK has been found to be over expressed in the cancer cells that are resistant to chemotherapeutic drugs. [10] [11] The resistance to chemotherapy seems to be reversible by administering chemo-resensitization drugs, such as verapamil, [12] which acts not via MK alteration, but by inhibiting the P-glycoprotein pump that exports cytotoxins out of cells. [13] Since chemotherapeutic drugs are cytotoxic, the drugs administered are also exported by this pump, rendering the chemotherapy ineffective. [13] It has been found that when the neuroblastoma cells that are resistant to chemotherapy are grown in co-culture with the wild type (WT), or chemotherapy-sensitive cells, the resistance to chemotherapy is conferred to the wild type cells, and thus no cell death or senescence occurs in either cell type, [10] despite the chemotherapeutic treatment. MK has been identified as one of the factors that "transfers" this chemoresistance from the resistant cells to the WT cells. [11]

MK is a secreted protein, and is therefore found in the microenvironment (media) of the resistant neuroblastoma cells. [11] Following co-culture experiments and the determination that MK was one of the factors that was conferring chemo-resistance to the wild, non-resistant cell type, [11] the gene for MK was transfected into WT cells to determine if MK was overexpressed in the WT cells themselves, would the cells become resistant to chemotherapy independent of resistant cell influence. The tests further confirmed that MK specifically increased chemotherapeutic resistance in the transfected WT-MK cells versus regular WT cells, confirming the specific chemoresistant properties of MK. [10]

In addition, the mechanism for such anti-apoptotic (anti-cell death) activity was studied, specifically using the chemotherapeutic Doxorubicin (Adriamycin) on osteosarcoma (Saos2) cells. [10] Doxorubicin works by putting rampant cancer cells into a senescent state. MK, in WT-MK transfected cells versus WT cells, seemed to activate PKB (Akt), mTOR, and Bad protein, while it inactivated caspase-3. [10] PKB, mTOR, and Bad are all elements associated with the cell cycle survival pathway, whereas caspase-3 is important in the apoptotic pathway (cell death). [10] This indicates that MK caused the cells to initiate the survival pathway (via PKB, mTOR, and Bad activation) and inhibit the senescent or apoptotic pathway (via inhibiting caspase-3) [10] encouraging the chemoresistance seen in resistant cells and in the co-culture experiments. The activation and inhibition of these particular factors clearly is maintaining the immortal quality inherent in cancer cells and specifically in the resistant cell types. Stat-3, however, which is another survival pathway factor, does not appear to have any change in activation between the wild type cells and the MK-transfected WT cells, [10] as was initially believed from a previous study. [11]

MK may potentially be indirectly targeted as a cancer treatment as a result of its cancerous proliferation properties. [14] Drugs by the name of anti-cancer aptamers have been created to inhibit to proteins involved in MK's cancer cell "activation". Specifically, the extra-cellular matrix (ECM) protein nucleolin has been targeted with an aptamer that would bind nucleolin and prevent MK from being transported into cancerous cell nuclei, preventing the protein from enhancing the cancerous properties of the cell. [14] Miyakawa et al. have successfully established the method to prepare the MDK specific RNA aptamers [15] by the use of the recombinant midkine [16] and pleiotrophin. [17]

Mdk is also a tumor antigen able to induce CD8 and CD4 T cell responses (Kerzerho et al. 2010 Journal of Immunology). [18]

HIV infection

Midkine binds to cell-surface nucleolin as a low affinity receptor. This binding can inhibit HIV infection. [19]

Trivia

Related Research Articles

<span class="mw-page-title-main">Endostatin</span>

Endostatin is a naturally occurring, 20-kDa C-terminal fragment derived from type XVIII collagen. It is reported to serve as an anti-angiogenic agent, similar to angiostatin and thrombospondin.

<span class="mw-page-title-main">Pleiotrophin</span> Protein in humans

Pleiotrophin (PTN) also known as heparin-binding brain mitogen (HBBM) or heparin-binding growth factor 8 (HBGF-8) or neurite growth-promoting factor 1 (NEGF1) or heparin affinity regulatory peptide (HARP) or heparin binding growth associated molecule (HB-GAM) is a protein that in humans is encoded by the PTN gene. Pleiotrophin is an 18-kDa growth factor that has a high affinity for heparin. It is structurally related to midkine and retinoic acid induced heparin-binding protein.

<span class="mw-page-title-main">Tropomyosin receptor kinase C</span> Protein-coding gene in the species Homo sapiens

Tropomyosin receptor kinase C (TrkC), also known as NT-3 growth factor receptor, neurotrophic tyrosine kinase receptor type 3, or TrkC tyrosine kinase is a protein that in humans is encoded by the NTRK3 gene.

<span class="mw-page-title-main">Mothers against decapentaplegic homolog 3</span> Protein-coding gene in humans

Mothers against decapentaplegic homolog 3 also known as SMAD family member 3 or SMAD3 is a protein that in humans is encoded by the SMAD3 gene.

<span class="mw-page-title-main">ACVR1C</span> Protein-coding gene in the species Homo sapiens

The activin A receptor also known as ACVR1C or ALK-7 is a protein that in humans is encoded by the ACVR1C gene. ACVR1C is a type I receptor for the TGFB family of signaling molecules.

<span class="mw-page-title-main">Fibroblast growth factor receptor 1</span> Protein-coding gene in the species Homo sapiens

Fibroblast growth factor receptor 1 (FGFR1), also known as basic fibroblast growth factor receptor 1, fms-related tyrosine kinase-2 / Pfeiffer syndrome, and CD331, is a receptor tyrosine kinase whose ligands are specific members of the fibroblast growth factor family. FGFR1 has been shown to be associated with Pfeiffer syndrome, and clonal eosinophilias.

<span class="mw-page-title-main">Heparin-binding EGF-like growth factor</span> Protein-coding gene in the species Homo sapiens

Heparin-binding EGF-like growth factor (HB-EGF) is a member of the EGF family of proteins that in humans is encoded by the HBEGF gene.

<span class="mw-page-title-main">Epiregulin</span> Protein found in humans

Epiregulin (EPR) is a protein that in humans is encoded by the EREG gene.

<span class="mw-page-title-main">ERBB3</span> Protein found in humans

Receptor tyrosine-protein kinase erbB-3, also known as HER3, is a membrane bound protein that in humans is encoded by the ERBB3 gene.

<span class="mw-page-title-main">Fibroblast growth factor receptor 4</span> Protein-coding gene in the species Homo sapiens

Fibroblast growth factor receptor 4 is a protein that in humans is encoded by the FGFR4 gene. FGFR4 has also been designated as CD334.

<span class="mw-page-title-main">S1PR1</span> Protein and coding gene in humans

Sphingosine-1-phosphate receptor 1, also known as endothelial differentiation gene 1 (EDG1) is a protein that in humans is encoded by the S1PR1 gene. S1PR1 is a G-protein-coupled receptor which binds the bioactive signaling molecule sphingosine 1-phosphate (S1P). S1PR1 belongs to a sphingosine-1-phosphate receptor subfamily comprising five members (S1PR1-5). S1PR1 was originally identified as an abundant transcript in endothelial cells and it has an important role in regulating endothelial cell cytoskeletal structure, migration, capillary-like network formation and vascular maturation. In addition, S1PR1 signaling is important in the regulation of lymphocyte maturation, migration and trafficking.

Trk receptors are a family of tyrosine kinases that regulates synaptic strength and plasticity in the mammalian nervous system. Trk receptors affect neuronal survival and differentiation through several signaling cascades. However, the activation of these receptors also has significant effects on functional properties of neurons.

<span class="mw-page-title-main">TNK2</span> Protein-coding gene in the species Homo sapiens

Activated CDC42 kinase 1, also known as ACK1, is an enzyme that in humans is encoded by the TNK2 gene. TNK2 gene encodes a non-receptor tyrosine kinase, ACK1, that binds to multiple receptor tyrosine kinases e.g. EGFR, MERTK, AXL, HER2 and insulin receptor (IR). ACK1 also interacts with Cdc42Hs in its GTP-bound form and inhibits both the intrinsic and GTPase-activating protein (GAP)-stimulated GTPase activity of Cdc42Hs. This binding is mediated by a unique sequence of 47 amino acids C-terminal to an SH3 domain. The protein may be involved in a regulatory mechanism that sustains the GTP-bound active form of Cdc42Hs and which is directly linked to a tyrosine phosphorylation signal transduction pathway. Several alternatively spliced transcript variants have been identified from this gene, but the full-length nature of only two transcript variants has been determined.

<span class="mw-page-title-main">Syndecan-3</span> Protein-coding gene in the species Homo sapiens

Syndecan-3 is a protein that in humans is encoded by the SDC3 gene.

<span class="mw-page-title-main">IGFBP7</span> Protein-coding gene in the species Homo sapiens

Insulin-like growth factor-binding protein 7 is a protein that in humans is encoded by the IGFBP7 gene. The major function of the protein is the regulation of availability of insulin-like growth factors (IGFs) in tissue as well as in modulating IGF binding to its receptors. IGFBP7 binds to IGF with low affinity compared to IGFBPs 1-6. It also stimulates cell adhesion. The protein is implicated in some cancers.

<span class="mw-page-title-main">ADAM9</span> Protein-coding gene in the species Homo sapiens

Disintegrin and metalloproteinase domain-containing protein 9 is an enzyme that in humans is encoded by the ADAM9 gene.

<span class="mw-page-title-main">PTPRZ1</span> Protein-coding gene in the species Homo sapiens

Receptor-type tyrosine-protein phosphatase zeta also known as phosphacan is an enzyme that in humans is encoded by the PTPRZ1 gene.

<span class="mw-page-title-main">FGFBP1</span> Protein-coding gene in the species Homo sapiens

Fibroblast growth factor-binding protein 1 is a protein that in humans is encoded by the FGFBP1 gene.

<span class="mw-page-title-main">KLF15</span> Protein-coding gene in the species Homo sapiens

Krüppel-like factor 15 is a protein that in humans is encoded by the KLF15 gene in the Krüppel-like factor family. Its former designation KKLF stands for kidney-enriched Krüppel-like factor.

EPI-001 is the first inhibitor of the androgen receptor amino-terminal domain. The single stereoisomer of EPI-001, EPI-002, is a first-in-class drug that the USAN council assigned a new stem class "-aniten" and the generic name "ralaniten". This distinguishes the anitens novel molecular mechanism from anti androgens that bind the C-terminus ligand-binding domain and have the stem class "lutamide". EPI-001 and its stereoisomers and analogues were discovered by Marianne Sadar and Raymond Andersen, who co-founded the pharmaceutical company ESSA Pharma Inc for the clinical development of anitens for the treatment of castration-resistant prostate cancer (CRPC).

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000110492 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000027239 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Kaname T, Kuwano A, Murano I, Uehara K, Muramatsu T, Kajii T (August 1993). "Midkine gene (MDK), a gene for prenatal differentiation and neuroregulation, maps to band 11p11.2 by fluorescence in situ hybridization". Genomics. 17 (2): 514–5. doi:10.1006/geno.1993.1359. PMID   8406506.
  6. Muramatsu Takashi (1 September 2002). "Midkine and pleiotrophin: two related proteins involved in development, survival, inflammation and tumorigenesis". J. Biochem. 132 (3): 359–71. doi:10.1093/oxfordjournals.jbchem.a003231. PMID   12204104.
  7. 1 2 Kato M, Maeta H, Kato S, Shinozawa T, Terada T (October 2000). "Immunohistochemical and in situ hybridization analyses of midkine expression in thyroid papillary carcinoma". Mod. Pathol. 13 (10): 1060–5. doi: 10.1038/modpathol.3880195 . PMID   11048798.
  8. Ikematsu S, Yano A, Aridome K, Kikuchi M, Kumai H, Nagano H, Okamoto K, Oda M, Sakuma S, Aikou T, Muramatsu H, Kadomatsu K, Muramatsu T (September 2000). "Serum midkine levels are increased in patients with various types of carcinomas". Br. J. Cancer. 83 (6): 701–6. doi:10.1054/bjoc.2000.1339. PMC   2363529 . PMID   10952771.
  9. 1 2 Ikematsu S, Nakagawara A, Nakamura Y, Sakuma S, Wakai K, Muramatsu T, Kadomatsu K (May 2003). "Correlation of elevated level of blood midkine with poor prognostic factors of human neuroblastomas". Br. J. Cancer. 88 (10): 1522–6. doi:10.1038/sj.bjc.6600938. PMC   2377118 . PMID   12771916.
  10. 1 2 3 4 5 6 7 8 Mirkin BL, Clark S, Zheng X, Chu F, White BD, Greene M, Rebbaa A (July 2005). "Identification of midkine as a mediator for intercellular transfer of drug resistance". Oncogene. 24 (31): 4965–74. doi:10.1038/sj.onc.1208671. PMID   15897897. S2CID   19462871.
  11. 1 2 3 4 5 Rebbaa A, Chou PM, Mirkin BL (June 2001). "Factors secreted by human neuroblastoma mediated doxorubicin resistance by activating STAT3 and inhibiting apoptosis". Mol. Med. 7 (6): 393–400. doi:10.1007/BF03402185. PMC   1950050 . PMID   11474132.
  12. Lavie Y, Cao H, Volner A, Lucci A, Han TY, Geffen V, Giuliano AE, Cabot MC (January 1997). "Agents that reverse multidrug resistance, tamoxifen, verapamil, and cyclosporin A, block glycosphingolipid metabolism by inhibiting ceramide glycosylation in human cancer cells". J. Biol. Chem. 272 (3): 1682–7. doi: 10.1074/jbc.272.3.1682 . PMID   8999846.
  13. 1 2 Yusa K, Tsuruo T (September 1989). "Reversal mechanism of multidrug resistance by verapamil: direct binding of verapamil to P-glycoprotein on specific sites and transport of verapamil outward across the plasma membrane of K562/ADM cells". Cancer Res. 49 (18): 5002–6. PMID   2569930.
  14. 1 2 Ireson CR, Kelland LR (December 2006). "Discovery and development of anticancer aptamers". Mol. Cancer Ther. 5 (12): 2957–62. doi:10.1158/1535-7163.MCT-06-0172. PMID   17172400. S2CID   592678.
  15. Miyakawa S, Fujiwara M, Nakamura Y, Matsui T, and Sakuma S. Aptamer against midkine and use thereof. United States Patent 8080649, 2011
  16. Murasugi A, Tohma-Aiba Y (2003). "Production of native recombinant human midkine in the yeast, Pichia pastoris". Protein Expr. Purif. 27 (2): 244–52. doi:10.1016/S1046-5928(02)00587-9. PMID   12597883.
  17. Murasugi A, Kido I, Kumai H, Asami Y (2003). "Efficient production of recombinant human pleio-trophin in yeast, Pichia pastoris". Biosci. Biotechnol. Biochem. 67 (10): 2288–90. doi:10.1271/bbb.67.2288. PMID   14586125. S2CID   23168994.
  18. Kerzerho, Jerome; Adotevi, Olivier; Castelli, Florence A.; Dosset, Magalie; Bernardeau, Karine; Szely, Natacha; Lang, Francois; Tartour, Eric; Maillere, Bernard (2010). "The Angiogenic Growth Factor and Biomarker Midkine is a Tumor-Shared Antigen". The Journal of Immunology. 185 (1): 418–423. doi: 10.4049/jimmunol.0901014 . PMID   20511550.
  19. Said EA, Krust B, Nisole S, Svab J, Briand JP, Hovanessian AG (October 2002). "The anti-HIV cytokine midkine binds the cell surface-expressed nucleolin as a low affinity receptor". J. Biol. Chem. 277 (40): 37492–502. doi: 10.1074/jbc.M201194200 . PMID   12147681.

Further reading