Hepatocyte growth factor

Last updated
HGF
Protein HGF PDB 1bht.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases HGF , DFNB39, F-TCF, HGFB, HPTA, SF, hepatocyte growth factor
External IDs OMIM: 142409 MGI: 96079 HomoloGene: 503 GeneCards: HGF
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000601
NM_001010931
NM_001010932
NM_001010933
NM_001010934

NM_010427
NM_001289458
NM_001289459
NM_001289460
NM_001289461

RefSeq (protein)

NP_000592
NP_001010931
NP_001010932
NP_001010933
NP_001010934

NP_001276387
NP_001276388
NP_001276389
NP_001276390
NP_034557

Location (UCSC) Chr 7: 81.7 – 81.77 Mb Chr 5: 16.76 – 16.83 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Hepatocyte growth factor (HGF) or scatter factor (SF) is a paracrine cellular growth, motility and morphogenic factor. It is secreted by mesenchymal cells and targets and acts primarily upon epithelial cells and endothelial cells, but also acts on haemopoietic progenitor cells and T cells. It has been shown to have a major role in embryonic organ development, specifically in myogenesis, in adult organ regeneration, and in wound healing. [5]

Function

Hepatocyte growth factor regulates cell growth, cell motility, and morphogenesis by activating a tyrosine kinase signaling cascade after binding to the proto-oncogenic c-Met receptor. [6] [7] Hepatocyte growth factor is secreted by platelets, [8] and mesenchymal cells and acts as a multi-functional cytokine on cells of mainly epithelial origin. Its ability to stimulate mitogenesis, cell motility, and matrix invasion gives it a central role in angiogenesis, tumorogenesis, and tissue regeneration. [9]

Structure

It is secreted as a single inactive polypeptide and is cleaved by serine proteases into a 69-kDa alpha-chain and 34-kDa beta-chain. A disulfide bond between the alpha and beta chains produces the active, heterodimeric molecule. The protein belongs to the plasminogen subfamily of S1 peptidases but has no detectable protease activity. [9]

Clinical significance

Human HGF plasmid DNA therapy of cardiomyocytes is being examined as a potential treatment for coronary artery disease as well as treatment for the damage that occurs to the heart after myocardial infarction. [10] [11] As well as the well-characterised effects of HGF on epithelial cells, endothelial cells and haemopoietic progenitor cells, HGF also regulates the chemotaxis of T cells into heart tissue. Binding of HGF by c-Met, expressed on T cells, causes the upregulation of c-Met, CXCR3, and CCR4 which in turn imbues them with the ability to migrate into heart tissue. [12] HGF also promotes angiogenesis in ischemia injury. [13] HGF may further play a role as an indicator for prognosis of chronicity for Chikungunya virus induced arthralgia. High HGF levels correlate with high rates of recovery. [14]

Excessive local expression of HGF in the breasts has been implicated in macromastia. [15] HGF is also importantly involved in normal mammary gland development. [16] [17]

HGF has been implicated in a variety of cancers, including of the lungs, pancreas, thyroid, colon, and breast. [18] [19] [20]

Increased expression of HGF has been associated with the enhanced and scarless wound healing capabilities of fibroblast cells isolated from the oral mucosa tissue. [21]

Circulating plasma levels

Plasma from patients with advanced heart failure presents increased levels of HGF, which correlates with a negative prognosis and a high risk of mortality. [22] [23] Circulating HGF has been also identified as a prognostic marker of severity in patients with hypertension. [24] Circulating HGF has been also suggested as a precocious biomarker for the acute phase of bowel inflammation. [25]

Pharmacokinetics

Exogenous HGF administered by intravenous injection is cleared rapidly from circulation by the liver, with a half-life of approximately 4 minutes. [26] [27] [28] [29]

Modulators

Dihexa is an orally active, centrally penetrant small-molecule compound that directly binds to HGF and potentiates its ability to activate its receptor, c-Met. [30] It is a strong inducer of neurogenesis and is being studied for the potential treatment of Alzheimer's disease and Parkinson's disease. [31] [32]

Interactions

Hepatocyte growth factor has been shown to interact with the protein product of the c-Met oncogene, identified as the HGF receptor (HGFR). [6] [33] [34] Both overexpression of the Met/HGFR receptor protein and autocrine activation of Met/HGFR by simultaneous expression of the hepatocyte growth factor ligand have been implicated in oncogenesis. [35] [36] Hepatocyte growth factor interacts with the sulfated glycosaminoglycans heparan sulfate and dermatan sulfate. [37] [38] The interaction with heparan sulfate allows hepatocyte growth factor to form a complex with c-Met that is able to transduce intracellular signals leading to cell division and cell migration. [37] [39]

See also

Related Research Articles

Morphogenesis is the biological process that causes a cell, tissue or organism to develop its shape. It is one of three fundamental aspects of developmental biology along with the control of tissue growth and patterning of cellular differentiation.

<span class="mw-page-title-main">Mammary gland</span> Exocrine gland in humans and other mammals

A mammary gland is an exocrine gland in humans and other mammals that produces milk to feed young offspring. Mammals get their name from the Latin word mamma, "breast". The mammary glands are arranged in organs such as the breasts in primates, the udder in ruminants, and the dugs of other animals. Lactorrhea, the occasional production of milk by the glands, can occur in any mammal, but in most mammals, lactation, the production of enough milk for nursing, occurs only in phenotypic females who have gestated in recent months or years. It is directed by hormonal guidance from sex steroids. In a few mammalian species, male lactation can occur. With humans, male lactation can occur only under specific circumstances.

The Wnt signaling pathways are a group of signal transduction pathways which begin with proteins that pass signals into a cell through cell surface receptors. The name Wnt is a portmanteau created from the names Wingless and Int-1. Wnt signaling pathways use either nearby cell-cell communication (paracrine) or same-cell communication (autocrine). They are highly evolutionarily conserved in animals, which means they are similar across animal species from fruit flies to humans.

<span class="mw-page-title-main">Hepatocyte growth factor receptor</span> Mammalian protein found in Homo sapiens

Hepatocyte growth factor receptor is a protein that in humans is encoded by the MET gene. The protein possesses tyrosine kinase activity. The primary single chain precursor protein is post-translationally cleaved to produce the alpha and beta subunits, which are disulfide linked to form the mature receptor.

The epithelial–mesenchymal transition (EMT) is a process by which epithelial cells lose their cell polarity and cell–cell adhesion, and gain migratory and invasive properties to become mesenchymal stem cells; these are multipotent stromal cells that can differentiate into a variety of cell types. EMT is essential for numerous developmental processes including mesoderm formation and neural tube formation. EMT has also been shown to occur in wound healing, in organ fibrosis and in the initiation of metastasis in cancer progression.

Fibroblast growth factors (FGF) are a family of cell signalling proteins produced by macrophages; they are involved in a wide variety of processes, most notably as crucial elements for normal development in animal cells. Any irregularities in their function lead to a range of developmental defects. These growth factors typically act as systemic or locally circulating molecules of extracellular origin that activate cell surface receptors. A defining property of FGFs is that they bind to heparin and to heparan sulfate. Thus, some are sequestered in the extracellular matrix of tissues that contains heparan sulfate proteoglycans and are released locally upon injury or tissue remodeling.

<span class="mw-page-title-main">Perlecan</span>

Perlecan (PLC) also known as basement membrane-specific heparan sulfate proteoglycan core protein (HSPG) or heparan sulfate proteoglycan 2 (HSPG2), is a protein that in humans is encoded by the HSPG2 gene. The HSPG2 gene codes for a 4,391 amino acid protein with a molecular weight of 468,829. It is one of the largest known proteins. The name perlecan comes from its appearance as a "string of pearls" in rotary shadowed images.

<span class="mw-page-title-main">Heparan sulfate</span> Macromolecule

Heparan sulfate (HS) is a linear polysaccharide found in all animal tissues. It occurs as a proteoglycan in which two or three HS chains are attached in close proximity to cell surface or extracellular matrix proteins. In this form, HS binds to a variety of protein ligands, including Wnt, and regulates a wide range of biological activities, including developmental processes, angiogenesis, blood coagulation, abolishing detachment activity by GrB, and tumour metastasis. HS has also been shown to serve as cellular receptor for a number of viruses, including the respiratory syncytial virus. One study suggests that cellular heparan sulfate has a role in SARS-CoV-2 Infection, particularly when the virus attaches with ACE2.

<span class="mw-page-title-main">Syndecan 1</span> Protein which in humans is encoded by the SDC1 gene

Syndecan 1 is a protein which in humans is encoded by the SDC1 gene. The protein is a transmembrane heparan sulfate proteoglycan and is a member of the syndecan proteoglycan family. The syndecan-1 protein functions as an integral membrane protein and participates in cell proliferation, cell migration and cell-matrix interactions via its receptor for extracellular matrix proteins. Syndecan-1 is a sponge for growth factors and chemokines, with binding largely via heparan sulfate chains. The syndecans mediate cell binding, cell signaling, and cytoskeletal organization and syndecan receptors are required for internalization of the HIV-1 tat protein.

<span class="mw-page-title-main">Syndecan</span>

Syndecans are single transmembrane domain proteins that are thought to act as coreceptors, especially for G protein-coupled receptors. More specifically, these core proteins carry three to five heparan sulfate and chondroitin sulfate chains, i.e. they are proteoglycans, which allow for interaction with a large variety of ligands including fibroblast growth factors, vascular endothelial growth factor, transforming growth factor-beta, fibronectin and antithrombin-1. Interactions between fibronectin and some syndecans can be modulated by the extracellular matrix protein tenascin C.

Neuromedin U is a neuropeptide found in the brain of humans and other mammals, which has a number of diverse functions including contraction of smooth muscle, regulation of blood pressure, pain perception, appetite, bone growth, and hormone release. It was first isolated from the spinal cord in 1985, and named after its ability to cause smooth muscle contraction in the uterus.

<span class="mw-page-title-main">Syndecan-2</span> Protein-coding gene in the species Homo sapiens

Syndecan-2 is a protein that in humans is encoded by the SDC2 gene.

<span class="mw-page-title-main">GRB2-associated-binding protein 1</span> Protein-coding gene in the species Homo sapiens

GRB2-associated-binding protein 1 is a protein that in humans is encoded by the GAB1 gene.

<span class="mw-page-title-main">FGF7</span> Protein-coding gene in the species Homo sapiens

Keratinocyte growth factor is a protein that in humans is encoded by the FGF7 gene.

<span class="mw-page-title-main">FGF10</span> Protein-coding gene in humans

Fibroblast growth factor 10 is a protein that in humans is encoded by the FGF10 gene.

<span class="mw-page-title-main">SULF1</span> Protein-coding gene in the species Homo sapiens

Sulfatase 1, also known as SULF1, is an enzyme which in humans is encoded by the SULF1 gene.

Breast development, also known as mammogenesis, is a complex biological process in primates that takes place throughout a female's life.

c-Met inhibitors are a class of small molecules that inhibit the enzymatic activity of the c-Met tyrosine kinase, the receptor of hepatocyte growth factor/scatter factor (HGF/SF). These inhibitors may have therapeutic application in the treatment of various types of cancers.

Human HGF plasmid DNA therapy of cardiomyocytes is being examined as a potential treatment for coronary artery disease, as well as treatment for the damage that occurs to the heart after MI. After MI, the myocardium suffers from reperfusion injury which leads to death of cardiomyocytes and detrimental remodelling of the heart, consequently reducing proper cardiac function. Transfection of cardiac myocytes with human HGF reduces ischemic reperfusion injury after MI. The benefits of HGF therapy include preventing improper remodelling of the heart and ameliorating heart dysfunction post-MI.

<span class="mw-page-title-main">Madin-Darby canine kidney cells</span> Cell line

Madin-Darby canine kidney (MDCK) cells are a model mammalian cell line used in biomedical research. MDCK cells are used for a wide variety of cell biology studies including cell polarity, cell-cell adhesions, collective cell motility, toxicity studies, as well as responses to growth factors. It is one of few cell culture models that is suited for 3D cell culture and multicellular rearrangements known as branching morphogenesis.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000019991 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000028864 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Gallagher, J.T., Lyon, M. (2000). "Molecular structure of Heparan Sulfate and interactions with growth factors and morphogens". In Iozzo, M, V. (ed.). Proteoglycans: structure, biology and molecular interactions. Marcel Dekker Inc. New York, New York. pp. 27–59.{{cite book}}: CS1 maint: multiple names: authors list (link)
  6. 1 2 Bottaro DP, Rubin JS, Faletto DL, Chan AM, Kmiecik TE, Vande Woude GF, Aaronson SA (February 1991). "Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product". Science. 251 (4995): 802–4. Bibcode:1991Sci...251..802B. doi:10.1126/science.1846706. PMID   1846706.
  7. Johnson M, Koukoulis G, Matsumoto K, Nakamura T, Iyer A (June 1993). "Hepatocyte growth factor induces proliferation and morphogenesis in nonparenchymal epithelial liver cells". Hepatology. 17 (6): 1052–61. doi: 10.1016/0270-9139(93)90122-4 . PMID   8514254.
  8. Custo S, Baron B, Felice A, Seria E (5 July 2022). "A comparative profile of total protein and six angiogenically-active growth factors in three platelet products". GMS Interdisciplinary Plastic and Reconstructive Surgery DGPW. 11 (Doc06): Doc06. doi:10.3205/iprs000167. PMC   9284722 . PMID   35909816.
  9. 1 2 "Entrez Gene: HGF hepatocyte growth factor (hepapoietin A; scatter factor)".
  10. Yang ZJ, Zhang YR, Chen B, Zhang SL, Jia EZ, Wang LS, Zhu TB, Li CJ, Wang H, Huang J, Cao KJ, Ma WZ, Wu B, Wang LS, Wu CT (July 2009). "Phase I clinical trial on intracoronary administration of Ad-hHGF treating severe coronary artery disease". Molecular Biology Reports. 36 (6): 1323–9. doi:10.1007/s11033-008-9315-3. PMID   18649012. S2CID   23419866.
  11. Hahn W, Pyun WB, Kim DS, Yoo WS, Lee SD, Won JH, Shin GJ, Kim JM, Kim S (October 2011). "Enhanced cardioprotective effects by coexpression of two isoforms of hepatocyte growth factor from naked plasmid DNA in a rat ischemic heart disease model". The Journal of Gene Medicine. 13 (10): 549–55. doi:10.1002/jgm.1603. PMID   21898720. S2CID   26812780.
  12. Komarowska I, Coe D, Wang G, Haas R, Mauro C, Kishore M, Cooper D, Nadkarni S, Fu H, Steinbruchel DA, Pitzalis C, Anderson G, Bucy P, Lombardi G, Breckenridge R, Marelli-Berg FM (September 2016). "Hepatocyte Growth Factor Receptor c-Met Instructs T Cell Cardiotropism and Promotes T Cell Migration to the Heart via Autocrine Chemokine Release". Immunity. 42 (6): 1087–99. doi:10.1016/j.immuni.2015.05.014. PMC   4510150 . PMID   26070483.
  13. Chang HK, Kim PH, Cho, HM, Yum, SY, Choi, YJ, Lee D, Kang I, Kang KS, Jang G, Cho JY (Sep 2016). "Inducible HGF-secreting Human Umbilical Cord Blood-derived MSCs Produced via TALEN-mediated Genome Editing Promoted Angiogenesis". Molecular Therapy. 24 (9): 1644–54. doi:10.1038/mt.2016.120. PMC   5113099 . PMID   27434585.
  14. Chow A, Her Z, Ong EK, Chen JM, Dimatatac F, Kwek DJ, Barkham T, Yang H, Rénia L, Leo YS, Ng LF (January 2011). "Persistent arthralgia induced by Chikungunya virus infection is associated with interleukin-6 and granulocyte macrophage colony-stimulating factor". The Journal of Infectious Diseases. 203 (2): 149–57. doi:10.1093/infdis/jiq042. PMC   3071069 . PMID   21288813.
  15. Zhong A, Wang G, Yang J, Xu Q, Yuan Q, Yang Y, Xia Y, Guo K, Horch RE, Sun J (July 2014). "Stromal-epithelial cell interactions and alteration of branching morphogenesis in macromastic mammary glands". Journal of Cellular and Molecular Medicine. 18 (7): 1257–66. doi:10.1111/jcmm.12275. PMC   4124011 . PMID   24720804.
  16. Niranjan B, Buluwela L, Yant J, Perusinghe N, Atherton A, Phippard D, Dale T, Gusterson B, Kamalati T (1995). "HGF/SF: a potent cytokine for mammary growth, morphogenesis and development". Development. 121 (9): 2897–908. doi:10.1242/dev.121.9.2897. PMID   7555716.
  17. Kamalati T, Niranjan B, Yant J, Buluwela L (1999). "HGF/SF in mammary epithelial growth and morphogenesis: in vitro and in vivo models". J Mammary Gland Biol Neoplasia. 4 (1): 69–77. doi:10.1023/A:1018756620265. PMID   10219907. S2CID   9310133.
  18. Thomas R. Ziegler, Glenn F. Pierce, David N. Herndon (6 December 2012). Growth Factors and Wound Healing: Basic Science and Potential Clinical Applications. Springer Science & Business Media. pp. 311–. ISBN   978-1-4612-1876-0.
  19. Sheen-Chen SM, Liu YW, Eng HL, Chou FF (March 2005). "Serum levels of hepatocyte growth factor in patients with breast cancer". Cancer Epidemiology, Biomarkers & Prevention. 14 (3): 715–7. doi: 10.1158/1055-9965.EPI-04-0340 . PMID   15767355. S2CID   3089594.
  20. El-Attar HA, Sheta MI (2011). "Hepatocyte growth factor profile with breast cancer". Indian Journal of Pathology & Microbiology. 54 (3): 509–13. doi: 10.4103/0377-4929.85083 . PMID   21934211.
  21. Dally J, Khan JS, Voisey A, Charalambous C, John HL, Woods EL, Steadman R, Moseley R, Midgley AC (August 2017). "Hepatocyte Growth Factor Mediates Enhanced Wound Healing Responses and Resistance to Transforming Growth Factor-β₁-Driven Myofibroblast Differentiation in Oral Mucosal Fibroblasts". International Journal of Molecular Sciences. 18 (9): 1843. doi: 10.3390/ijms18091843 . PMC   5618492 . PMID   28837064.
  22. Richter B, Koller L, Hohensinner PJ, Zorn G, Brekalo M, Berger R, Mörtl D, Maurer G, Pacher R, Huber K, Wojta J, Hülsmann M, Niessner A (September 2013). "A multi-biomarker risk score improves prediction of long-term mortality in patients with advanced heart failure". International Journal of Cardiology. 168 (2): 1251–7. doi:10.1016/j.ijcard.2012.11.052. PMID   23218577.
  23. Rychli K, Richter B, Hohensinner PJ, Kariem Mahdy A, Neuhold S, Zorn G, Berger R, Mörtl D, Huber K, Pacher R, Wojta J, Niessner A, Hülsmann M (July 2011). "Hepatocyte growth factor is a strong predictor of mortality in patients with advanced heart failure". Heart. 97 (14): 1158–63. doi:10.1136/hrt.2010.220228. PMID   21572126. S2CID   22426278.
  24. Nakamura S, Morishita R, Moriguchi A, Yo Y, Nakamura Y, Hayashi S, Matsumoto K, Matsumoto K, Nakamura T, Higaki J, Ogihara T (December 1998). "Hepatocyte growth factor as a potential index of complication in diabetes mellitus". Journal of Hypertension. 16 (12 Pt 2): 2019–26. doi:10.1097/00004872-199816121-00025. PMID   9886892. S2CID   6615179.
  25. Sorour AE, Lönn J, Nakka SS, Nayeri T, Nayeri F (January 2015). "Evaluation of hepatocyte growth factor as a local acute phase response marker in the bowel: the clinical impact of a rapid diagnostic test for immediate identification of acute bowel inflammation". Cytokine. 71 (1): 8–15. doi: 10.1016/j.cyto.2014.07.255 . PMID   25174881.
  26. Yang J, Chen S, Huang L, Michalopoulos GK, Liu Y (April 2001). "Sustained expression of naked plasmid DNA encoding hepatocyte growth factor in mice promotes liver and overall body growth". Hepatology. 33 (4): 848–59. doi:10.1053/jhep.2001.23438. PMC   1821076 . PMID   11283849.
  27. Appasamy R, Tanabe M, Murase N, Zarnegar R, Venkataramanan R, Van Thiel DH, Michalopoulos GK (March 1993). "Hepatocyte growth factor, blood clearance, organ uptake, and biliary excretion in normal and partially hepatectomized rats". Laboratory Investigation; A Journal of Technical Methods and Pathology. 68 (3): 270–6. PMID   8450646.
  28. Kato Y, Liu KX, Nakamura T, Sugiyama Y (August 1994). "Heparin-hepatocyte growth factor complex with low plasma clearance and retained hepatocyte proliferating activity". Hepatology. 20 (2): 417–24. doi:10.1002/hep.1840200223. PMID   8045504. S2CID   20021569.
  29. Yu Y, Yao AH, Chen N, Pu LY, Fan Y, Lv L, Sun BC, Li GQ, Wang XH (July 2007). "Mesenchymal stem cells over-expressing hepatocyte growth factor improve small-for-size liver grafts regeneration". Molecular Therapy. 15 (7): 1382–9. doi: 10.1038/sj.mt.6300202 . PMID   17519892.
  30. Benoist CC, Kawas LH, Zhu M, Tyson KA, Stillmaker L, Appleyard SM, Wright JW, Wayman GA, Harding JW (November 2014). "The procognitive and synaptogenic effects of angiotensin IV-derived peptides are dependent on activation of the hepatocyte growth factor/c-met system". The Journal of Pharmacology and Experimental Therapeutics. 351 (2): 390–402. doi:10.1124/jpet.114.218735. PMC   4201273 . PMID   25187433.
  31. Wright JW, Harding JW (2015). "The Brain Hepatocyte Growth Factor/c-Met Receptor System: A New Target for the Treatment of Alzheimer's Disease". Journal of Alzheimer's Disease. 45 (4): 985–1000. doi:10.3233/JAD-142814. PMID   25649658.
  32. Wright JW, Kawas LH, Harding JW (February 2015). "The development of small molecule angiotensin IV analogs to treat Alzheimer's and Parkinson's diseases". Progress in Neurobiology. 125: 26–46. doi:10.1016/j.pneurobio.2014.11.004. PMID   25455861. S2CID   41360989.
  33. Comoglio PM (1993). "Structure, biosynthesis and biochemical properties of the HGF receptor in normal and malignant cells". Exs. 65: 131–65. PMID   8380735.
  34. Naldini L, Weidner KM, Vigna E, Gaudino G, Bardelli A, Ponzetto C, Narsimhan RP, Hartmann G, Zarnegar R, Michalopoulos GK (October 1991). "Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor". The EMBO Journal. 10 (10): 2867–78. doi:10.1002/j.1460-2075.1991.tb07836.x. PMC   452997 . PMID   1655405.
  35. Johnson M, Koukoulis G, Kochhar K, Kubo C, Nakamura T, Iyer A (September 1995). "Selective tumorigenesis in non-parenchymal liver epithelial cell lines by hepatocyte growth factor transfection". Cancer Letters. 96 (1): 37–48. doi:10.1016/0304-3835(95)03915-j. PMID   7553606.
  36. Kochhar KS, Johnson ME, Volpert O, Iyer AP (1995). "Evidence for autocrine basis of transformation in NIH-3T3 cells transfected with met/HGF receptor gene". Growth Factors. 12 (4): 303–13. doi:10.3109/08977199509028968. PMID   8930021.
  37. 1 2 Lyon M, Deakin JA, Gallagher JT (January 2002). "The mode of action of heparan and dermatan sulfates in the regulation of hepatocyte growth factor/scatter factor". The Journal of Biological Chemistry. 277 (2): 1040–6. doi: 10.1074/jbc.M107506200 . PMID   11689562. S2CID   29982976.
  38. Lyon M, Deakin JA, Rahmoune H, Fernig DG, Nakamura T, Gallagher JT (Jan 1998). "Hepatocyte growth factor/scatter factor binds with high affinity to dermatan sulfate". J Biol Chem. 273 (1): 271–8. doi: 10.1074/jbc.273.1.271 . PMID   9417075. S2CID   39689713.
  39. Sergeant N, Lyon M, Rudland PS, Fernig DG, Delehedde M (June 2000). "Stimulation of DNA synthesis and cell proliferation of human mammary myoepithelial-like cells by hepatocyte growth factor/scatter factor depends on heparan sulfate proteoglycans and sustained phosphorylation of mitogen-activated protein kinases p42/44". The Journal of Biological Chemistry. 275 (22): 17094–9. doi: 10.1074/jbc.M000237200 . PMID   10747885. S2CID   25507615.

Further reading