5-MeO-isoDMT

Last updated

5-MeO-isoDMT
5-MeO-isoDMT.svg
Clinical data
Other names5-MeO-iso-DMT; 5-Methoxy-isoDMT; 5-OMe-isoDMT; 5-OMe-iso-DMT; 5-Methoxy-iso-DMT; 5-Methoxy-N,N-dimethylisotryptamine
Drug class Non-hallucinogenic serotonin 5-HT2A receptor agonist; Psychoplastogen
Identifiers
  • 2-(5-methoxyindol-1-yl)-N,N-dimethylethanamine
PubChem CID
ChemSpider
ChEMBL
Chemical and physical data
Formula C13H18N2O
Molar mass 218.300 g·mol−1
3D model (JSmol)
  • CN(C)CCN1C=CC2=C1C=CC(=C2)OC
  • InChI=1S/C13H18N2O/c1-14(2)8-9-15-7-6-11-10-12(16-3)4-5-13(11)15/h4-7,10H,8-9H2,1-3H3
  • Key:HRCTXPIFQNOZCQ-UHFFFAOYSA-N

5-MeO-isoDMT, or 5-OMe-isoDMT, also known as 5-methoxy-N,N-dimethylisotryptamine, is a putatively non-hallucinogenic serotonin 5-HT2A receptor agonist and psychoplastogen of the isotryptamine group. [1] [2] [3] [4] [5] [6] It is the isotryptamine analogue of the non-hallucinogenic 6-MeO-DMT and is a positional isomer of the psychedelic 6-MeO-isoDMT. [3] [5] [6]

The drug does not substitute for serotonergic psychedelics in animal drug discrimination tests and does not produce the head-twitch response, a behavioral of psychedelic effects, at any dose. [1] [3] [5] [7] [6] Hence, it appears to be non-hallucinogenic. [3] [5] [6] On the other hand, 5-MeO-isoDMT has comparable psychoplastogenic potency and effects compared to the psychedelic 5-MeO-DMT. [1] [2] [4] [5] These effects are blocked by the serotonin 5-HT2A receptor antagonist ketanserin. [4] [5] Certain analogues and derivatives of 5-MeO-isoDMT, like isoDMT and the α-methylated AAZ-A-154 (DLX-001; (R)-5-MeO-α-methyl-isoDMT), likewise produce no head-twitch response, whereas 6-MeO-isoDMT produces a reduced head-twitch response. [1] [4] [5] [6] Hence, these analogues appear to be less or fully non-hallucinogenic similarly to 5-MeO-isoDMT. [1] [4] [5] [6] In addition, like 5-MeO-isoDMT, they retain potent psychoplastogenic effects. [1] [4] [5]

5-MeO-isoDMT was first described in the scientific literature by 1984. [6] [7] It was subsequently further characterized in 2020. [4] [5] Confusingly, the drug has been referred to as "6-MeO-isoDMT" (or rather "6-OMe-isoDMT") in some publications. [3]

See also

Related Research Articles

<span class="mw-page-title-main">5-MeO-DET</span> Chemical compound

5-MeO-DET or 5-methoxy-N,N-diethyltryptamine is a hallucinogenic tryptamine.

<span class="mw-page-title-main">5,N,N-TMT</span> Chemical compound

5,N,N-trimethyltryptamine is a tryptamine derivative that is a psychedelic drug. It was first made in 1958 by Edwin H. P. Young. In animal experiments it was found to be in between DMT and 5-MeO-DMT in potency which would suggest an active dosage for humans in the 20–60 mg range. Human psychoactivity for this compound has been claimed in reports on websites such as Erowid but has not been independently confirmed.

<span class="mw-page-title-main">Ariadne (drug)</span> Psychoactive phenethylamine drug

Ariadne, also known chemically as 4C-D or 4C-DOM, by its developmental code name BL-3912, and by its former tentative brand name Dimoxamine, is a little-known psychoactive drug of the phenethylamine, amphetamine, and phenylisobutylamine families. It is a homologue of the psychedelics 2C-D and DOM.

<span class="mw-page-title-main">2,5-Dimethoxy-4-amylamphetamine</span> Chemical compound

Dimethoxy-4-amylamphetamine (DOAM) is a lesser-known psychedelic drug and a substituted amphetamine. DOAM was first synthesized by Alexander Shulgin. In his book PiHKAL (Phenethylamines i Have Known And Loved), the minimum dosage is listed as 10 mg, and the duration is unknown. DOAM produces a bare threshold and tenseness. As the 4-alkyl chain length is increased from shorter homologues such as DOM, DOET and DOPR which are all potent hallucinogens, the 5-HT2 binding affinity increases, rising to a maximum with the 4-(n-hexyl) derivative before falling again with even longer chains, but compounds with chain length longer than n-propyl, or with other bulky groups such as isopropyl, t-butyl or γ-phenylpropyl at the 4- position, fail to substitute for hallucinogens in animals or produce hallucinogenic effects in humans, suggesting these have low efficacy and are thus antagonists or partial agonists at the 5-HT2A receptor.

<span class="mw-page-title-main">5-MeS-DMT</span> Chemical compound

5-MeS-DMT (5-methylthio-N,N-dimethyltryptamine) is a lesser-known psychedelic drug. It is the 5-methylthio analog of dimethyltryptamine (DMT). 5-MeS-DMT was first synthesized by Alexander Shulgin. In his book TiHKAL, the minimum dosage is listed as 15-30 mg. The duration listed as very short, just like DMT. 5-MeS-DMT produces similar effects to DMT, but weaker. Shulgin describes his feelings while on a low dose of this drug as "pointlessly stoned", although at a higher dose of 20 mg he says it is "quite intense" and suggests that a higher dose still might have full activity.

<span class="mw-page-title-main">5-Fluoro-DMT</span> Chemical compound

5-Fluoro-N,N-dimethyltryptamine is a tryptamine derivative related to compounds such as 5-bromo-DMT and 5-MeO-DMT. It produces a robust head-twitch response in mice, and hence is a putative serotonergic psychedelic. Fluorination of psychedelic tryptamines either reduces or has little effect on 5-HT2A/C receptor affinity or intrinsic activity, although 6-fluoro-DET is inactive as a psychedelic despite acting as a 5-HT2A agonist, while 4-fluoro-5-methoxy-DMT is a much stronger agonist at 5-HT1A than 5-HT2A.

5-Methoxy-7,<i>N</i>,<i>N</i>-trimethyltryptamine Chemical compound

5-Methoxy-7,N,N-trimethyltryptamine (5-MeO-7,N,N-TMT, 5-MeO-7-TMT), is a tryptamine derivative which acts as a partial agonist at the 5-HT2 serotonin receptors, with an EC50 of 63.9 nM and an efficacy of 66.2% at 5-HT2A (vs 5-HT), and weaker activity at 5-HT2B and 5-HT2C. In animal tests, both 7,N,N-TMT and 5-MeO-7,N,N-TMT produced behavioural responses similar to those of psychedelic drugs such as DMT and 5-MeO-DMT, but compounds with larger 7-position substituents such as 7-ethyl-DMT and 7-bromo-DMT did not produce psychedelic-appropriate responding despite high 5-HT2 receptor binding affinity, suggesting these may be antagonists or weak partial agonists for the 5-HT2 receptors. The related compound 7-MeO-MiPT (cf. 5-MeO-MiPT) was also found to be inactive, suggesting that the 7-position has poor tolerance for bulky groups at this position, at least if agonist activity is desired.

<span class="mw-page-title-main">7,N,N-TMT</span> Chemical compound

7,N,N-trimethyltryptamine (7-methyl-DMT, 7-TMT), is a tryptamine derivative which acts as an agonist of 5-HT2 receptors. In animal tests, both 7-TMT and its 5-methoxy derivative 5-MeO-7-TMT produced behavioural responses similar to those of psychedelic drugs such as DMT, but the larger 7-ethyl and 7-bromo derivatives of DMT did not produce psychedelic responses despite having higher 5-HT2 receptor affinity in vitro (cf. DOBU, DOAM). 7-TMT also weakly inhibits reuptake of serotonin but with little effect on dopamine or noradrenaline reuptake.

<span class="mw-page-title-main">4-MeO-DMT</span> Chemical compound

4-MeO-DMT (4-methoxy-N,N-dimethyltryptamine) is a tryptamine derivative which has some central activity in animal tests similar to that of related psychedelic tryptamine drugs, although with significantly lower potency than either 5-MeO-DMT or 4-hydroxy-DMT (psilocin).

<span class="mw-page-title-main">Substituted tryptamine</span> Class of indoles

Substituted tryptamines, or simply tryptamines, also known as serotonin analogues (i.e., 5-hydroxytryptamine analogues), are organic compounds which may be thought of as being derived from tryptamine itself. The molecular structures of all tryptamines contain an indole ring, joined to an amino (NH2) group via an ethyl (−CH2–CH2−) sidechain. In substituted tryptamines, the indole ring, sidechain, and/or amino group are modified by substituting another group for one of the hydrogen (H) atoms.

<span class="mw-page-title-main">5-MeO-NBpBrT</span> Chemical compound

5-MeO-NBpBrT is a N-substituted member of the methoxytryptamine family of compounds. Like other such compounds it acts as an antagonist for the 5-HT2A receptor, with a claimed 100x selectivity over the closely related 5-HT2C receptor. While N-benzyl substitution of psychedelic phenethylamines often results in potent 5-HT2A agonists, it had been thought that N-benzyl tryptamines show much lower efficacy and are either very weak partial agonists or antagonists at 5-HT2A, though more recent research has shown stronger agonist activity for 3-substituted benzyl derivatives. Extending the benzyl group to a substituted phenethyl can also recover agonist activity in certain cases.

<span class="mw-page-title-main">AAZ-A-154</span> Chemical compound

AAZ-A-154, also known as DLX-001 or as (R)-5-methoxy-N,N-dimethyl-α-methylisotryptamine, is a novel isotryptamine derivative which acts as a serotonin 5-HT2A receptor agonist discovered and synthesized by the lab of Professor David E. Olson at the University of California, Davis. It is being developed for the treatment of major depressive disorder and other central nervous system disorders.

<i>O</i>-Acetylbufotenine Psychedelic tryptamine

O-Acetylbufotenine, or bufotenine O-acetate, also known as 5-acetoxy-N,N-dimethyltryptamine (5-AcO-DMT) or O-acetyl-N,N-dimethylserotonin, is a synthetic tryptamine derivative and putative serotonergic psychedelic. It is the O-acetylated analogue of the naturally occurring peripherally selective serotonergic tryptamine bufotenine and is thought to act as a centrally penetrant prodrug of bufotenine.

<span class="mw-page-title-main">6-Fluoro-DET</span> Chemical compound

6-Fluoro-DET is a substituted tryptamine derivative related to drugs such as DET and 5-fluoro-DET. It acts as a partial agonist at the 5-HT2A receptor, but while it produces similar physiological effects to psychedelic drugs, it does not appear to produce psychedelic effects itself even at high doses. For this reason it saw some use as an active placebo in early clinical trials of psychedelic drugs but was regarded as having little use otherwise, though more recent research into compounds such as AL-34662, TBG and AAZ-A-154 has shown that these kind of non-psychedelic 5-HT2A agonists can have various useful applications.

ITI-1549 is a putatively non-hallucinogenic serotonin 5-HT2A receptor agonist which is under development for the treatment of mood disorders and other psychiatric disorders. In addition to acting at the serotonin 5-HT2A receptor, it is also an antagonist of the serotonin 5-HT2B receptor and an agonist of the serotonin 5-HT2C receptor. The drug's route of administration has not been specified.

<span class="mw-page-title-main">6-MeO-DMT</span> Non-hallucinogenic 5-HT2A agonist

6-MeO-DMT, or 6-methoxy-N,N-dimethyltryptamine, also known as 6-OMe-DMT, is a serotonergic drug of the tryptamine family. It is the 6-methoxy derivative of the serotonergic psychedelic N,N-dimethyltryptamine (DMT) and is a positional isomer of the serotonergic psychedelic 5-MeO-DMT.

<span class="mw-page-title-main">Isotryptamine</span> Chemical compound

Isotryptamine, also known as 2-(1-indolyl)ethylamine, is a chemical compound and positional isomer of tryptamine (2-(3-indolyl)ethylamine). A number of isotryptamine derivatives, or substituted isotryptamines, have been developed, including serotonergic psychedelics and psychoplastogens like 6-MeO-isoDMT, non-hallucinogenic psychoplastogens like isoDMT, 5-MeO-isoDMT, and AAZ-A-154 (DLX-001), serotonin 5-HT2C receptor agonists, and serotonin 5-HT6 receptor modulators.

<span class="mw-page-title-main">6-MeO-isoDMT</span> Serotonergic psychoplastogen

6-MeO-isoDMT, or 6-OMe-isoDMT, also known as 6-methoxy-N,N-dimethylisotryptamine, is a serotonin 5-HT2A receptor agonist, putative serotonergic psychedelic, and psychoplastogen of the isotryptamine group. It is the isotryptamine analogue of the psychedelic 5-MeO-DMT and is a positional isomer of the non-hallucinogenic psychoplastogen 5-MeO-isoDMT.

References

  1. 1 2 3 4 5 6 Duan W, Cao D, Wang S, Cheng J (January 2024). "Serotonin 2A Receptor (5-HT2AR) Agonists: Psychedelics and Non-Hallucinogenic Analogues as Emerging Antidepressants". Chemical Reviews. 124 (1): 124–163. doi:10.1021/acs.chemrev.3c00375. PMID   38033123.
  2. 1 2 Atiq MA, Baker MR, Voort JL, Vargas MV, Choi DS (May 2024). "Disentangling the acute subjective effects of classic psychedelics from their enduring therapeutic properties". Psychopharmacology. doi:10.1007/s00213-024-06599-5. PMID   38743110.
  3. 1 2 3 4 5 Glennon RA, Young R (5 August 2011). "Role of stereochemistry in drug discrimination studies". In Glennon RA, Young R (eds.). Drug Discrimination: Applications to Medicinal Chemistry and Drug Studies. Wiley. pp. 129–161. doi:10.1002/9781118023150. ISBN   978-0-470-43352-2.
  4. 1 2 3 4 5 6 7 Dunlap LE (2022). "Development of Non-Hallucinogenic Psychoplastogens". eScholarship. Retrieved 19 November 2024.
  5. 1 2 3 4 5 6 7 8 9 10 Dunlap LE, Azinfar A, Ly C, Cameron LP, Viswanathan J, Tombari RJ, et al. (February 2020). "Identification of Psychoplastogenic N,N-Dimethylaminoisotryptamine (isoDMT) Analogues through Structure-Activity Relationship Studies". Journal of Medicinal Chemistry. 63 (3): 1142–1155. doi:10.1021/acs.jmedchem.9b01404. PMC   7075704 . PMID   31977208.
  6. 1 2 3 4 5 6 7 Glennon RA, Jacyno JM, Young R, McKenney JD, Nelson D (January 1984). "Synthesis and evaluation of a novel series of N,N-dimethylisotryptamines". Journal of Medicinal Chemistry. 27 (1): 41–45. doi:10.1021/jm00367a008. PMID   6581313.
  7. 1 2 Glennon RA, Young R (1987). "The Study of Structure-Activity Relationships Using Drug Discrimination Methodology". Methods of Assessing the Reinforcing Properties of Abused Drugs. New York, NY: Springer New York. pp. 373–390. doi:10.1007/978-1-4612-4812-5_18. ISBN   978-1-4612-9163-3.