Surugatoxin

Last updated
Surugatoxin
Surugatoxin.svg
Identifiers
  • [(3S)-2,3,4,5,6-pentahydroxycyclohexyl] (6aS,8R,9S,11aS)-6'-bromo-6a,9-dihydroxy-9-methyl-1,2',3,10-tetraoxo-spiro[4,6,7,11a-tetrahydropyrido[1,2-f]pteridine-8,3'-indoline]-7-carboxylate
CAS Number
PubChem CID
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula C25H26BrN5O13
Molar mass 684.409 g·mol−1
3D model (JSmol)
  • CC1(C(=O)N2C3=C(NCC2(C(C14C5=C(C=C(C=C5)Br)NC4=O)C(=O)OC6C(C(C(C(C6O)O)O)O)O)O)NC(=O)NC3=O)O

Surugatoxin (SGTX) is a type of venom found in the mid-gut digestive gland of the Japanese ivory mollusk Babylonia japonica, a carnivorous gastropod. [1] It functions as a ganglionic blocker of nicotinic acetylcholine receptors (nAChRs). [1] The structurally and functionally related neosurugatoxin, also derived from Babylonia japonica, is an even more potent nAChR antagonist than SGTX. [2]

Contents

SGTX is a colorless crystalline substance with the chemical formula C25H26BrN5O13 and a molecular weight of 684.4g/mol. Its systematic chemical name is [(2R,3S,5S,6S)-2,3,4,5,6-pentahydroxycyclohexyl] (6aS,7R,8R,9R)-6'-bromo-6a,9-dihydroxy-9-methyl-1,2',3,10-tetraoxo-spiro[4,5,6,7-tetrahydropyrido[1,2-f]pteridine-8,3'-indoline]-7-carboxylate. [3] It is insoluble in organic solvents and has very low solubility in water. [4]

The ganglionic blockade of nAChRs by SGTX is similar to that of IS-toxin, a structurally similar compound derived from the same mollusk, Babylonia japonica. [1] [5]

Background and discovery

A food poisoning outbreak of 26 cases in the Ganyudo area of Suruga Bay, Shizuoka Prefecture in Japan in September 1965 was traced to ingestion of the toxin surugatoxin (SGTX), named for Suruga Bay. [6] SGTX is contained in the mid-gut digestive gland of the Japanese ivory mollusk, Babylonia japonica, which is used as an ingredient in sushi and sashimi. [1] The food-poisoning patients reported a variety of symptoms, including visual disorders, speech disorders, lazy eye amblyopia, pupil dilation (mydriasis), abdominal distention, dry mouth, numbness of lips, constipation, and vomiting. [1] [6]

The toxicity shellfish from the Suruga Bay area varied with time – the toxicity was only present during July through September, when temperatures sometimes reached 25°C and it rapidly declined after 1978, making the availability of surugatoxin and the related substances neosurugatoxin and prosurugatoxin unavailable for research. Kosuge and colleagues [7] found that these toxins are actually the metabolized products of a marine bacterium that belongs to the Coryneform group. Toxicity is a result of bioaccumulation.

Behavioral and physiological effects

A number of researchers have characterized the effect of surugatoxin on behavior and physiology in animal models [1] [4]

Mice

SGTX causes disturbances in gait, suppression of spontaneous motility, and mydriasis in mice at intravenous (i.v.) dose levels of 0.5-1.0 mg/kg. [4] At higher doses (20–40 mg/kg), intraperitoneal (i.p.) application of SGTX caused depression of respiratory movement and tremor.

Rats

SGTX blocks orthodromic transmission, as evidenced by the fact that the synaptic potential is strongly depressed with application of the toxin and the block intensifies as stimulus frequency increases. [8] This effect is slow to develop and is similar to another ganglionic nACHR antagonist, hexamethonium.

Cats

SGTX causes depression of spontaneous movement, mydriasis, and relaxation of the nictitating membrane in cats at i.v. dose levels of 0.15-0.2 mg/kg. Further, it produces hypotension of 1–2 hours in duration that is not prevented by treatment with atropine or propranolol. [1]

Humans

Most clinical symptoms resulting from Babylonia japonica ingestion, as in the 1965 food-poisoning outbreak, seem to be mediated by ganglion-blockade of nicotinic ACh receptors at various sites; visual impairments and mydriasis due to ciliary ganglion blockade, dry mouth due to submaxillary and otic ganglion blockade, and constipation and abdominal distention due to intestinal intrinsic nerve blockade. [1]

Pharmacology

Surugatoxin is a specific, reversible, competitive antagonist of ganglionic nicotinic acetylcholine receptors (nACHRs). [9] Although a number of articles were published in the two decades following the discovery of SGTX in the mid-1960s, relatively little is known about the pharmacological properties of this toxin. Ascher and colleagues [9] posit that ganglionic blockade by SGTX results from binding to the closed state of the channel-receptor complex, possibly to the receptor itself. It is 50-100 times more potent than hexamethonium, another ganglionic antagonist of nAChRs. [1] Brown and colleagues found that the SGTX dissociation constants measured at equilibrium block in rats were 58nM and 76nM, as measured from the shift in depolarization produced by 0.2μM and 2 μM SGTX, respectively. [8] Surugatoxin is listed on two U.S. patents, both for potential clinical treatments. U.S. Patent 7,468,188 proposes the use of locally-administered neurotoxins in the treatment of muscle injury and U.S. Patent 7,214,700 proposes the use of (2-Oxindol-3-ylidenyl) acetic acid derivatives as protein kinase inhibitors. Surugatoxin has not been demonstrated to be effective in either of these treatment proposals, but rather, is listed as a potentially relevant substance in these treatment plans.

Related Research Articles

<span class="mw-page-title-main">Acetylcholine receptor</span> Integral membrane protein

An acetylcholine receptor is an integral membrane protein that responds to the binding of acetylcholine, a neurotransmitter.

Anticholinergics are substances that block the action of the neurotransmitter called acetylcholine (ACh) at synapses in the central and peripheral nervous system.

<span class="mw-page-title-main">Nicotinic acetylcholine receptor</span> Acetylcholine receptors named for their selective binding of nicotine

Nicotinic acetylcholine receptors, or nAChRs, are receptor polypeptides that respond to the neurotransmitter acetylcholine. Nicotinic receptors also respond to drugs such as the agonist nicotine. They are found in the central and peripheral nervous system, muscle, and many other tissues of many organisms. At the neuromuscular junction they are the primary receptor in muscle for motor nerve-muscle communication that controls muscle contraction. In the peripheral nervous system: (1) they transmit outgoing signals from the presynaptic to the postsynaptic cells within the sympathetic and parasympathetic nervous system, and (2) they are the receptors found on skeletal muscle that receive acetylcholine released to signal for muscular contraction. In the immune system, nAChRs regulate inflammatory processes and signal through distinct intracellular pathways. In insects, the cholinergic system is limited to the central nervous system.

<span class="mw-page-title-main">Muscarinic acetylcholine receptor</span> Acetylcholine receptors named for their selective binding of muscarine

Muscarinic acetylcholine receptors, or mAChRs, are acetylcholine receptors that form G protein-coupled receptor complexes in the cell membranes of certain neurons and other cells. They play several roles, including acting as the main end-receptor stimulated by acetylcholine released from postganglionic fibers in the parasympathetic nervous system.

<span class="mw-page-title-main">Epibatidine</span> Toxic chemical from some poison dart frogs

Epibatidine is a chlorinated alkaloid that is secreted by the Ecuadoran frog Epipedobates anthonyi and poison dart frogs from the Ameerega genus. It was discovered by John W. Daly in 1974, but its structure was not fully elucidated until 1992. Whether epibatidine is the first observed example of a chlorinated alkaloid remains controversial, due to challenges in conclusively identifying the compound from the limited samples collected by Daly. By the time that high-resolution spectrometry was used in 1991, there remained less than one milligram of extract from Daly's samples, raising concerns about possible contamination. Samples from other batches of the same species of frog failed to yield epibatidine.

<span class="mw-page-title-main">Tubocurarine chloride</span> Obsolete muscle relaxant

Tubocurarine is a toxic alkaloid historically known for its use as an arrow poison. In the mid-1900s, it was used in conjunction with an anesthetic to provide skeletal muscle relaxation during surgery or mechanical ventilation. It is now rarely used as an adjunct for clinical anesthesia because safer alternatives, such as cisatracurium and rocuronium, are available.

<span class="mw-page-title-main">Trimetaphan camsilate</span>

Trimetaphan camsilate (INN) or trimethaphan camsylate (USAN), trade name Arfonad, is a drug that counteracts cholinergic transmission at the ganglion type of nicotinic receptors of the autonomic ganglia and therefore blocks both the sympathetic nervous system and the parasympathetic nervous system. It acts as a non-depolarizing competitive antagonist at the nicotinic acetylcholine receptor, is short-acting, and is given intravenously.

<span class="mw-page-title-main">Hexamethonium</span> Chemical compound

Hexamethonium is a non-depolarising ganglionic blocker, a nicotinic (nAChR) receptor antagonist that acts in autonomic ganglia by binding mostly in or on the nAChR receptor, and not the acetylcholine binding site itself. It does not have any effect on the muscarinic acetylcholine receptors (mAChR) located on target organs of the parasympathetic nervous system but acts as antagonist at the nicotinic acetylcholine receptors located in sympathetic and parasympathetic ganglia (nAChR).

<span class="mw-page-title-main">Methyllycaconitine</span> Chemical compound

Methyllycaconitine (MLA) is a diterpenoid alkaloid found in many species of Delphinium (larkspurs). In common with many other diterpenoid alkaloids, it is toxic to animals, although the acute toxicity varies with species. Early research was focused on identifying, and characterizing the properties of methyllycaconitine as one of the principal toxins in larkspurs responsible for livestock poisoning in the mountain rangelands of North America. Methyllycaconitine has been explored as a possible therapeutic agent for the treatment of spastic paralyses in man, and it has been shown to have insecticidal properties. Most recently, it has become an important molecular probe for studying the pharmacology of the nicotinic acetylcholine receptor.

A ganglionic blocker is a type of medication that inhibits transmission between preganglionic and postganglionic neurons in the autonomic nervous system, often by acting as a nicotinic receptor antagonist. Nicotinic acetylcholine receptors are found on skeletal muscle, but also within the route of transmission for the parasympathetic and sympathetic nervous system. More specifically, nicotinic receptors are found within the ganglia of the autonomic nervous system, allowing outgoing signals to be transmitted from the presynaptic to the postsynaptic cells. Thus, for example, blocking nicotinic acetylcholine receptors blocks both sympathetic (excitatory) and parasympathetic (calming) stimulation of the heart. The nicotinic antagonist hexamethonium, for example, does this by blocking the transmission of outgoing signals across the autonomic ganglia at the postsynaptic nicotinic acetylcholine receptor.

<span class="mw-page-title-main">Cobratoxin</span> Chemical compound

α-Cobratoxin is a substance of the venom of certain Naja cobras. It is a nicotinic acetylcholine receptor (nAChR) antagonist which causes paralysis by preventing the binding of acetylcholine to the nAChR.

The muscle-type nicotinic receptor is a type of nicotinic acetylcholine receptor consisting of the subunit combination (α1)2β1δε (adult receptor) or (α1)2β1δγ (fetal receptor). These receptors are found in neuromuscular junctions, where activation leads to an excitatory postsynaptic potential (EPSP), mainly by increased Na+ and K+ permeability.

Pentolinium is a ganglionic blocking agent which acts as a nicotinic acetylcholine receptor antagonist. Formulated as the pentolinium tartrate salt, it is also known as Ansolysen. It can be used as an antihypertensive drug during surgery or to control hypertensive crises. It works by binding to the acetylcholine receptor of adrenergic nerves and thereby inhibiting the release of noradrenaline and adrenaline. Blocking this receptor leads to smooth muscle relaxation and vasodilation.

Philanthotoxins are components of the venom of the Egyptian solitary wasp Philanthus triangulum, commonly known as the European beewolf. Philanthotoxins are polyamine toxins, a group of toxins isolated from the venom of wasps and spiders which immediately but reversibly paralyze their prey. δ-philanthotoxin, also known as PhTX-433, is the most active philanthotoxin that can be refined from the venom. PhTX-433 functions by non-selectively blocking excitatory neurotransmitter ion channels, including nicotinic acetylcholine receptors (nAChRs) and ionotropic glutamate receptors (iGluRs). Synthetic analogues, including PhTX-343 and PhTX-12, have been developed to improve selectivity. While the IC50 values of philanthotoxins varies between analogues and receptor subunit composition, the IC50 value of PhTX-433 at the iGluR AMPA receptor naturally expressed in locust leg muscle is 18 μM and the IC50 value at rat nAChRs is 1 μM.

The alpha-3 beta-4 nicotinic receptor, also known as the α3β4 receptor and the ganglion-type nicotinic receptor, is a type of nicotinic acetylcholine receptor, consisting of α3 and β4 subunits. It is located in the autonomic ganglia and adrenal medulla, where activation yields post- and/or presynaptic excitation, mainly by increased Na+ and K+ permeability.

<span class="mw-page-title-main">Methoctramine</span> Chemical compound

Methoctramine is a polymethylene tetraamine that acts as a muscarinic antagonist. It preferentially binds to the pre-synaptic receptor M2, a muscarinic acetylcholine ganglionic protein complex present basically in heart cells. In normal conditions -absence of methoctramine-, the activation of M2 receptors diminishes the speed of conduction of the sinoatrial and atrioventricular nodes thus reducing the heart rate. Thanks to its apparently high cardioselectivity, it has been studied as a potential parasymphatolitic drug, particularly against bradycardia. However, currently it is only addressed for research purposes, since the administration to humans is still unavailable.

κ-Bungarotoxin Protein neurotoxin of the bungarotoxin family

κ-Bungarotoxin is a protein neurotoxin of the bungarotoxin family that is found in the venom of the many-banded krait, a snake found in Taiwan. κ-Bungarotoxin is a high affinity antagonist of nicotinic acetylcholine receptors (nAChRs), particularly of CHRNA3; it causes a post-synaptic blockade of neurotransmission. Although there is significant variability in the clinical effects of snake bites, neuromuscular paralysis and respiratory failure are associated with krait bites.

<i>Babylonia japonica</i> Species of gastropod

Babylonia japonica, common name the Japanese Babylon or Japanese ivory shell, is a species of sea snail, a marine gastropod mollusc in the family Babyloniidae.

<span class="mw-page-title-main">Three-finger toxin</span> Toxin protein

Three-finger toxins are a protein superfamily of small toxin proteins found in the venom of snakes. Three-finger toxins are in turn members of a larger superfamily of three-finger protein domains which includes non-toxic proteins that share a similar protein fold. The group is named for its common structure consisting of three beta strand loops connected to a central core containing four conserved disulfide bonds. The 3FP protein domain has no enzymatic activity and is typically between 60-74 amino acid residues long. Despite their conserved structure, three-finger toxin proteins have a wide range of pharmacological effects. Most members of the family are neurotoxins that act on cholinergic intercellular signaling; the alpha-neurotoxin family interacts with muscle nicotinic acetylcholine receptors (nAChRs), the kappa-bungarotoxin family with neuronal nAChRs, and muscarinic toxins with muscarinic acetylcholine receptors (mAChRs).

<span class="mw-page-title-main">Cholinergic blocking drug</span> Drug that block acetylcholine in synapses of cholinergic nervous system

Cholinergic blocking drugs are a group of drugs that block the action of acetylcholine (ACh), a neurotransmitter, in synapses of the cholinergic nervous system. They block acetylcholine from binding to cholinergic receptors, namely the nicotinic and muscarinic receptors.

References

  1. 1 2 3 4 5 6 7 8 9 Hayashi E, Yamada S (February 1975). "Pharmacological studies on surugatoxin, the toxic principle from Japanese ivory mollusc (Babylonia japonica)". British Journal of Pharmacology. 53 (2): 207–15. doi:10.1111/j.1476-5381.1975.tb07350.x. PMC   1666298 . PMID   238699.
  2. Fusetani, Nobuhiro; William Kem (2009). "Marine Toxins: An Overview". Marine Toxins as Research Tools. Progress in Molecular and Subcellular Biology. Vol. 46. pp. 1–44. Bibcode:2009mtrt.book....1F. doi:10.1007/978-3-540-87895-7_1. ISBN   978-3-540-87892-6. PMID   19184583.
  3. "Surugatoxin" . Retrieved 14 May 2012.
  4. 1 2 3 Hirayama H, Sugihara K, Tsuyama S, Wakigawa K, Okuma H (August 1974). "A ganglion blocking action of toxic substances, IS-toxin and surugatoxin, from the Japanese ivory shell, Babylonia japonica". Japanese Journal of Pharmacology. 24 (4): 559–74. doi: 10.1254/jjp.24.559 . PMID   4156375.
  5. Hirayama H, Gogi K, Urakawa N, Ikeda M (June 1970). "A ganglion-blocking action of the toxin isolated from Japanese ivory shell (Babylonia japonica)". Japanese Journal of Pharmacology. 20 (2): 311–2. doi: 10.1254/jjp.20.311 . PMID   4393951.
  6. 1 2 Kosuge T, Tsuji K, Hirai K (September 1982). "Isolation of neosurugatoxin from the Japanese ivory shell, Babylonia japonica". Chemical & Pharmaceutical Bulletin. 30 (9): 3255–9. doi:10.1248/cpb.30.3255. PMID   7172333.
  7. Kosuge T, Tsuji K, Hirai K, Fukuyama T (July 1985). "First evidence of toxin production by bacteria in a marine organism". Chemical & Pharmaceutical Bulletin. 33 (7): 3059–61. doi: 10.1248/cpb.33.3059 . PMID   2867831.
  8. 1 2 Brown DA, Garthwaite J (September 1976). "Action of surugatoxin on nicotinic receptors in the superior cervical ganglion of the rat". British Journal of Pharmacology. 58 (1): 157–9. doi:10.1111/j.1476-5381.1976.tb07705.x. PMC   1667125 . PMID   974373.
  9. 1 2 Ascher P, Large WA, Rang HP (October 1979). "Studies on the mechanism of action of acetylcholine antagonists on rat parasympathetic ganglion cells". The Journal of Physiology. 295: 139–70. doi:10.1113/jphysiol.1979.sp012958. PMC   1278790 . PMID   42780.