CGP-39551

Last updated
CGP-39551
(E)-(4-Amino-5-ethoxy-2-methyl-5-oxopent-2-en-1-yl)phosphonic acid.png
Names
IUPAC name
[(E)-4-amino-5-ethoxy-2-methyl-5-oxopent-2-enyl]phosphonic acid
Identifiers
3D model (JSmol)
ChemSpider
EC Number
  • 694-678-0
PubChem CID
  • InChI=1S/C8H16NO5P/c1-3-14-8(10)7(9)4-6(2)5-15(11,12)13/h4,7H,3,5,9H2,1-2H3,(H2,11,12,13)/b6-4+
    Key: OKDOWCKDTWNRCB-GQCTYLIASA-N
  • CCOC(=O)C(/C=C(\C)/CP(=O)(O)O)N
Properties
C8H16NO5P
Molar mass 237.192 g·mol−1
Hazards
GHS labelling: [1]
GHS-pictogram-skull.svg
Danger
H301
P264, P270, P301+P316, P321, P330, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

CGP-39551 is a drug used in scientific research, it is investigated as an anti-convulsant. [2]

Contents

Mechanism of action

CGP-39551 and some related molecules are competitive antagonists of the N-methyl D-aspartate receptor, an excitatory receptor activated by glutamate. [3] [4]

Potential

As other glutamate antagonists, CGP-39551 possesses anti-convulsant properties. It is able to suppress seizures caused by electroshock, with a duration of action superior to 24 hours. [5]

It has also been shown to be able to block convulsions caused by vestibular stimulation. [6]

Additionally, CGP-39551 appears to be better than some other NMDA blockers in terms of side effects, since the dose required for its anti-convulsant action does not have significant impact on memory and learning, unlike certain drugs with a similar mechanism of action such as Dizocilpine. [7]

Related Research Articles

<i>N</i>-Methyl-<small>D</small>-aspartic acid Amino acid derivative

N-methyl-D-aspartic acid or N-methyl-D-aspartate (NMDA) is an amino acid derivative that acts as a specific agonist at the NMDA receptor mimicking the action of glutamate, the neurotransmitter which normally acts at that receptor. Unlike glutamate, NMDA only binds to and regulates the NMDA receptor and has no effect on other glutamate receptors. NMDA receptors are particularly important when they become overactive during, for example, withdrawal from alcohol as this causes symptoms such as agitation and, sometimes, epileptiform seizures.

<span class="mw-page-title-main">AP5</span> Chemical compound

AP5 is a chemical compound used as a biochemical tool to study various cellular processes. It is a selective NMDA receptor antagonist that competitively inhibits the ligand (glutamate) binding site of NMDA receptors. AP5 blocks NMDA receptors in micromolar concentrations.

<span class="mw-page-title-main">Dizocilpine</span> Chemical compound

Dizocilpine (INN), also known as MK-801, is a pore blocker of the NMDA receptor, a glutamate receptor, discovered by a team at Merck in 1982. Glutamate is the brain's primary excitatory neurotransmitter. The channel is normally blocked with a magnesium ion and requires depolarization of the neuron to remove the magnesium and allow the glutamate to open the channel, causing an influx of calcium, which then leads to subsequent depolarization. Dizocilpine binds inside the ion channel of the receptor at several of PCP's binding sites thus preventing the flow of ions, including calcium (Ca2+), through the channel. Dizocilpine blocks NMDA receptors in a use- and voltage-dependent manner, since the channel must open for the drug to bind inside it. The drug acts as a potent anti-convulsant and probably has dissociative anesthetic properties, but it is not used clinically for this purpose because of the discovery of brain lesions, called Olney's lesions (see below), in laboratory rats. Dizocilpine is also associated with a number of negative side effects, including cognitive disruption and psychotic-spectrum reactions. It inhibits the induction of long term potentiation and has been found to impair the acquisition of difficult, but not easy, learning tasks in rats and primates. Because of these effects of dizocilpine, the NMDA receptor pore blocker ketamine is used instead as a dissociative anesthetic in human medical procedures. While ketamine may also trigger temporary psychosis in certain individuals, its short half-life and lower potency make it a much safer clinical option. However, dizocilpine is the most frequently used uncompetitive NMDA receptor antagonist in animal models to mimic psychosis for experimental purposes.

<span class="mw-page-title-main">NMDA receptor antagonist</span> Class of anesthetics

NMDA receptor antagonists are a class of drugs that work to antagonize, or inhibit the action of, the N-Methyl-D-aspartate receptor (NMDAR). They are commonly used as anesthetics for humans and animals; the state of anesthesia they induce is referred to as dissociative anesthesia.

<span class="mw-page-title-main">Quisqualic acid</span> Chemical compound

Quisqualic acid is an agonist of the AMPA, kainate, and group I metabotropic glutamate receptors. It is one of the most potent AMPA receptor agonists known. It causes excitotoxicity and is used in neuroscience to selectively destroy neurons in the brain or spinal cord. Quisqualic acid occurs naturally in the seeds of Quisqualis species.

<span class="mw-page-title-main">Ifenprodil</span> Chemical compound

Ifenprodil is an inhibitor of the NMDA receptor, specifically of GluN1 and GluN2B subunits. Additionally, ifenprodil inhibits GIRK channels, and interacts with alpha1 adrenergic, serotonin, and sigma receptors.

<span class="mw-page-title-main">GRIN2A</span> Protein-coding gene in the species Homo sapiens

Glutamate [NMDA] receptor subunit epsilon-1 is a protein that in humans is encoded by the GRIN2A gene. With 1464 amino acids, the canonical GluN2A subunit isoform is large. GluN2A-short isoforms specific to primates can be produced by alternative splicing and contain 1281 amino acids.

<span class="mw-page-title-main">GRIN1</span> Protein-coding gene in the species Homo sapiens

Glutamate [NMDA] receptor subunit zeta-1 is a protein that in humans is encoded by the GRIN1 gene.

<span class="mw-page-title-main">Midafotel</span> Chemical compound

Midafotel is a potent, competitive antagonist at the NMDA receptor. It was originally designed as a potential therapy for excitotoxicity, epilepsy or neuropathic pain. It looked very promising in in vitro trials proving to be a potent competitive antagonist at the NMDA without affecting other receptors. Research continued through to in vivo cat studies where it proved to limit damage after occluding the middle cerebral artery, leading to ischaemia. It also blocked photosensitive epilepsies in baboons.

<span class="mw-page-title-main">Selfotel</span> Chemical compound

Selfotel (CGS-19755) is a drug which acts as a competitive NMDA antagonist, directly competing with glutamate for binding to the receptor. Initial studies showed it to have anticonvulsant, anxiolytic, analgesic and neuroprotective effects, and it was originally researched for the treatment of stroke, but subsequent animal and human studies showed phencyclidine-like effects, as well as limited efficacy and evidence for possible neurotoxicity under some conditions, and so clinical development was ultimately discontinued.

<span class="mw-page-title-main">Tetrazolylglycine</span> Chemical compound

Tetrazolylglycine is a potent and selective NMDA receptor agonist, stimulating the NMDA receptor with higher potency than either glutamate or NMDA. It is a potent convulsant and excitotoxin and is used in scientific research.

<span class="mw-page-title-main">Neramexane</span> Chemical compound

Neramexane is a drug related to memantine, which acts as an NMDA antagonist and has neuroprotective effects. It is being developed for various possible applications, including treatment of tinnitus, Alzheimer's disease, drug addiction and as an analgesic. Animal studies have also suggested antidepressant and nootropic actions so that this drug may be used for a wide range of potential applications. It also acts as a nicotinic acetylcholine receptor antagonist.

<span class="mw-page-title-main">Perzinfotel</span> Chemical compound

Perzinfotel (EAA-090) is a drug which acts as a potent NMDA antagonist. It has neuroprotective effects and has been investigated for the treatment of stroke, but lacks analgesic effects. Nevertheless, it shows a good safety profile compared to older drugs, although further development of this drug has been discontinued.

<span class="mw-page-title-main">CGP-37849</span> Chemical compound

CGP-37849 is a competitive antagonist at the NMDA receptor. It is a potent, orally active anticonvulsant in animal models, and was researched for the treatment of epilepsy. It also has neuroprotective activity and shows antidepressant and anxiolytic effects.

<span class="mw-page-title-main">PEAQX</span> Chemical compound

PEAQX is a competitive antagonist at the NMDA receptor. Although originally described as 100-fold selective for GluN1/GluN2A receptors vs. GluN1/GluN2B receptors, more detailed studies of the Ki of PEAQX revealed it only shows a 5 fold difference in affinity for GluN1/GluN2A vs. GluN1/GluN2B receptors. It is also a potent anticonvulsant in animal tests.

<span class="mw-page-title-main">2-Methyl-6-(phenylethynyl)pyridine</span> Chemical compound

2-Methyl-6-(phenylethynyl)pyridine (MPEP) is a research drug which was one of the first compounds found to act as a selective antagonist for the metabotropic glutamate receptor subtype mGluR5. After being originally patented as a liquid crystal for LCDs, it was developed by the pharmaceutical company Novartis in the late 1990s. It was found to produce neuroprotective effects following acute brain injury in animal studies, although it was unclear whether these results were purely from mGluR5 blockade as it also acts as a weak NMDA antagonist, and as a positive allosteric modulator of another subtype mGlu4, and there is also evidence for a functional interaction between mGluR5 and NMDA receptors in the same populations of neurons. It was also shown to produce antidepressant and anxiolytic effects in animals, and to reduce the effects of morphine withdrawal, most likely due to direct interaction between mGluR5 and the μ-opioid receptor.

<span class="mw-page-title-main">GYKI 52466</span> Chemical compound

GYKI 52466 is a 2,3-benzodiazepine that acts as an ionotropic glutamate receptor antagonist, which is a non-competitive AMPA receptor antagonist (IC50 values are 10-20, ~ 450 and >> 50 μM for AMPA-, kainate- and NMDA-induced responses respectively), orally-active anticonvulsant, and skeletal muscle relaxant. Unlike conventional 1,4-benzodiazepines, GYKI 52466 and related 2,3-benzodiazepines do not act on GABAA receptors. Like other AMPA receptor antagonists, GYKI 52466 has anticonvulsant and neuroprotective properties.

<span class="mw-page-title-main">Traxoprodil</span> Chemical compound

Traxoprodil is a drug developed by Pfizer which acts as an NMDA antagonist, selective for the NR2B subunit. It has neuroprotective, analgesic, and anti-Parkinsonian effects in animal studies. Traxoprodil has been researched in humans as a potential treatment to lessen the damage to the brain after stroke, but results from clinical trials showed only modest benefit. The drug was found to cause EKG abnormalities and its clinical development was stopped. More recent animal studies have suggested traxoprodil may exhibit rapid-acting antidepressant effects similar to those of ketamine, although there is some evidence for similar psychoactive side effects and abuse potential at higher doses, which might limit clinical acceptance of traxoprodil for this application.

<span class="mw-page-title-main">HA-966</span> Chemical compound

HA-966 or (±)-3-amino-1-hydroxy-pyrrolidin-2-one is a molecule used in scientific research as a glycine receptor and NMDA receptor antagonist / low efficacy partial agonist. It has neuroprotective and anticonvulsant, anxiolytic, antinociceptive and sedative / hypnotic effects in animal models. Pilot human clinical trials in the early 1960s showed that HA-966 appeared to benefit patients with tremors of extrapyramidal origin.

<span class="mw-page-title-main">7-Chlorokynurenic acid</span> Chemical compound

7-Chlorokynurenic acid (7-CKA) is a tool compound that acts as a potent and selective competitive antagonist of the glycine site of the NMDA receptor. It produces ketamine-like rapid antidepressant effects in animal models of depression. However, 7-CKA is unable to cross the blood-brain-barrier, and for this reason, is unsuitable for clinical use. As a result, a centrally-penetrant prodrug of 7-CKA, 4-chlorokynurenine (AV-101), has been developed for use in humans, and is being studied in clinical trials as a potential treatment for major depressive disorder, and anti-nociception. In addition to antagonizing the NMDA receptor, 7-CKA also acts as a potent inhibitor of the reuptake of glutamate into synaptic vesicles, an action that it mediates via competitive blockade of vesicular glutamate transporters.

References

  1. "(E)-(4-Amino-5-ethoxy-2-methyl-5-oxopent-2-en-1-yl)phosphonic acid". pubchem.ncbi.nlm.nih.gov.
  2. "CGP 39551 | NMDA Receptor Antagonist".
  3. Fagg, G. E.; Olpe, H. R.; Pozza, M. F.; Baud, J.; Steinmann, M.; Schmutz, M.; Portet, C.; Baumann, P.; Thedinga, K.; Bittiger, H. (April 1990). "CGP 37849 and CGP 39551: novel and potent competitive N-methyl-D-aspartate receptor antagonists with oral activity". British Journal of Pharmacology. 99 (4): 791–797. doi:10.1111/j.1476-5381.1990.tb13008.x. ISSN   0007-1188. PMC   1917531 . PMID   1972895.
  4. Pozza, M. F.; Olpe, H. R.; Brugger, F.; Fagg, G. E. (1990-06-21). "Electrophysiological characterization of a novel potent and orally active NMDA receptor antagonist: CGP 37849 and its ethylester CGP 39551". European Journal of Pharmacology. 182 (1): 91–100. doi:10.1016/0014-2999(90)90496-s. ISSN   0014-2999. PMID   1976098.
  5. Schmutz, M.; Portet, C.; Jeker, A.; Klebs, K.; Vassout, A.; Allgeier, H.; Heckendorn, R.; Fagg, G. E.; Olpe, H. R.; van Riezen, H. (July 1990). "The competitive NMDA receptor antagonists CGP 37849 and CGP 39551 are potent, orally-active anticonvulsants in rodents". Naunyn-Schmiedeberg's Archives of Pharmacology. 342 (1): 61–66. doi:10.1007/BF00178973. ISSN   0028-1298. PMID   1976233.
  6. D'Hooge, R.; Raes, A.; Hiramatsu, M.; Mori, A.; Van Bogaert, P. P.; De Deyn, P. P. (December 1998). "Effects of the competitive N-methyl-D-aspartate antagonist CGP 37849 and its ethylester CGP 39551 on N-methyl-D-aspartate-evoked whole-cell currents in cultured spinal neurones and on vestibular stimulation-induced seizures in EL mice". Arzneimittel-Forschung. 48 (12): 1121–1125. ISSN   0004-4172. PMID   9893924.
  7. Bischoff, C.; Tiedtke, P. I. (1992-03-24). "Competitive and non-competitive NMDA receptor antagonists in spatial learning tasks". European Journal of Pharmacology. 213 (2): 269–273. doi:10.1016/0014-2999(92)90691-v. ISSN   0014-2999. PMID   1355738.