Talampanel

Last updated
Talampanel
Talampanel skeletal.svg
Clinical data
ATC code
  • none
Legal status
Legal status
  • Investigational
Identifiers
  • (8R)-7-Acetyl-5-(4-aminophenyl)-8,9-dihydro-8-methyl-7H-1,3-dioxolo[4,5-h][2,3]benzodiazepine
CAS Number
PubChem CID
ChemSpider
UNII
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard 100.230.001 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C19H19N3O3
Molar mass 337.379 g·mol−1
3D model (JSmol)
  • Nc4ccc(cc4)C(=NN2C(=O)C)c3cc1OCOc1cc3CC2C
  • InChI=1S/C19H19N3O3/c1-11-7-14-8-17-18(25-10-24-17)9-16(14)19(21-22(11)12(2)23)13-3-5-15(20)6-4-13/h3-6,8-9,11H,7,10,20H2,1-2H3/t11-/m1/s1 X mark.svgN
  • Key:JACAAXNEHGBPOQ-LLVKDONJSA-N X mark.svgN
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Talampanel (INN; development codes GYKI 537773 and LY300164) is a drug which has been investigated for the treatment of epilepsy, [1] [2] malignant gliomas, [3] and amyotrophic lateral sclerosis (ALS). [4]

As of May 2010, results from the trial for ALS have been found negative. [5] Talampanel is not currently under development.

Talampanel acts as a non-competitive antagonist of the AMPA receptor, a type of ionotropic glutamate receptor in the central nervous system. [6]

It showed effectiveness for epilepsy in clinical trials but its development was suspended due to its poor pharmacokinetic profile, namely a short terminal half-life (3 hours) that necessitated multiple doses per day. [7]

Related Research Articles

Serine is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group, a carboxyl group, and a side chain consisting of a hydroxymethyl group, classifying it as a polar amino acid. It can be synthesized in the human body under normal physiological circumstances, making it a nonessential amino acid. It is encoded by the codons UCU, UCC, UCA, UCG, AGU and AGC.

Anticonvulsants are a diverse group of pharmacological agents used in the treatment of epileptic seizures. Anticonvulsants are also increasingly being used in the treatment of bipolar disorder and borderline personality disorder, since many seem to act as mood stabilizers, and for the treatment of neuropathic pain. Anticonvulsants suppress the excessive rapid firing of neurons during seizures. Anticonvulsants also prevent the spread of the seizure within the brain.

<span class="mw-page-title-main">Lamotrigine</span> Medication used for bipolar disorder, epilepsy, & many seizure disorders

Lamotrigine, sold under the brand name Lamictal among others, is a medication used to treat epilepsy and stabilize mood in bipolar disorder. For epilepsy, this includes focal seizures, tonic-clonic seizures, and seizures in Lennox-Gastaut syndrome. In bipolar disorder, lamotrigine has not been shown to reliably treat acute depression for all groups except in the severely depressed; but for patients with bipolar disorder who are not currently symptomatic, it appears to reduce the risk of future episodes of depression.

<span class="mw-page-title-main">AMPA receptor</span> Transmembrane protein family

The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (also known as AMPA receptor, AMPAR, or quisqualate receptor) is an ionotropic transmembrane receptor for glutamate (iGluR) and predominantly Na+ ion channel that mediates fast synaptic transmission in the central nervous system (CNS). It has been traditionally classified as a non-NMDA-type receptor, along with the kainate receptor. Its name is derived from its ability to be activated by the artificial glutamate analog AMPA. The receptor was first named the "quisqualate receptor" by Watkins and colleagues after a naturally occurring agonist quisqualate and was only later given the label "AMPA receptor" after the selective agonist developed by Tage Honore and colleagues at the Royal Danish School of Pharmacy in Copenhagen. The GRIA2-encoded AMPA receptor ligand binding core (GluA2 LBD) was the first glutamate receptor ion channel domain to be crystallized.

<span class="mw-page-title-main">Levetiracetam</span> Medication

Levetiracetam, sold under the brand name Keppra among others, is a medication used to treat epilepsy. It is used for partial-onset, myoclonic, or tonic–clonic seizures and is taken either by mouth as an immediate or extended release formulation or by injection into a vein.

<span class="mw-page-title-main">Excitotoxicity</span> Process that kills nerve cells

In excitotoxicity, nerve cells suffer damage or death when the levels of otherwise necessary and safe neurotransmitters such as glutamate become pathologically high, resulting in excessive stimulation of receptors. For example, when glutamate receptors such as the NMDA receptor or AMPA receptor encounter excessive levels of the excitatory neurotransmitter, glutamate, significant neuronal damage might ensue. Excess glutamate allows high levels of calcium ions (Ca2+) to enter the cell. Ca2+ influx into cells activates a number of enzymes, including phospholipases, endonucleases, and proteases such as calpain. These enzymes go on to damage cell structures such as components of the cytoskeleton, membrane, and DNA. In evolved, complex adaptive systems such as biological life it must be understood that mechanisms are rarely, if ever, simplistically direct. For example, NMDA in subtoxic amounts induces neuronal survival of otherwise toxic levels of glutamate.

<span class="mw-page-title-main">Riluzole</span> Medication used to treat amyotrophic lateral sclerosis

Riluzole is a medication used to treat amyotrophic lateral sclerosis and other motor neuron diseases. Riluzole delays the onset of ventilator-dependence or tracheostomy in some people and may increase survival by two to three months. Riluzole is available in tablet and liquid form.

<span class="mw-page-title-main">Kainate receptor</span> Class of ionotropic glutamate receptors

Kainate receptors, or kainic acid receptors (KARs), are ionotropic receptors that respond to the neurotransmitter glutamate. They were first identified as a distinct receptor type through their selective activation by the agonist kainate, a drug first isolated from the algae Digenea simplex. They have been traditionally classified as a non-NMDA-type receptor, along with the AMPA receptor. KARs are less understood than AMPA and NMDA receptors, the other ionotropic glutamate receptors. Postsynaptic kainate receptors are involved in excitatory neurotransmission. Presynaptic kainate receptors have been implicated in inhibitory neurotransmission by modulating release of the inhibitory neurotransmitter GABA through a presynaptic mechanism.

<span class="mw-page-title-main">Clobazam</span> Benzodiazepine class medication

Clobazam, sold under the brand names Frisium, Onfi and others, is a benzodiazepine class medication that was patented in 1968. Clobazam was first synthesized in 1966 and first published in 1969. Clobazam was originally marketed as an anxioselective anxiolytic since 1970, and an anticonvulsant since 1984. The primary drug-development goal was to provide greater anxiolytic, anti-obsessive efficacy with fewer benzodiazepine-related side effects.

<span class="mw-page-title-main">Felbamate</span> Chemical compound

Felbamate is an anticonvulsant used in the treatment of epilepsy. It is used to treat partial seizures in adults and partial and generalized seizures associated with Lennox–Gastaut syndrome in children. However, an increased risk of potentially fatal aplastic anemia and/or liver failure limit the drug's usage to severe refractory epilepsy.

β-Methylamino-<small>L</small>-alanine Chemical compound

β-Methylamino-L-alanine, or BMAA, is a non-proteinogenic amino acid produced by cyanobacteria. BMAA is a neurotoxin. Its potential role in various neurodegenerative disorders is the subject of scientific research.

<span class="mw-page-title-main">Seletracetam</span> Chemical compound

Seletracetam is a pyrrolidone-derived drug of the racetam family that is structurally related to levetiracetam. It was under development by UCB Pharmaceuticals as a more potent and effective anticonvulsant drug to replace levetiracetam but its development has been halted.

<span class="mw-page-title-main">Lacosamide</span> Anticonvulsant and analgesic medication

Lacosamide, sold under the brand name Vimpat among others, is a medication used for the treatment of partial-onset seizures and primary generalized tonic-clonic seizures. It is used by mouth or intravenously.

<span class="mw-page-title-main">Excitatory amino acid transporter 2</span> Protein found in humans

Excitatory amino acid transporter 2 (EAAT2) also known as solute carrier family 1 member 2 (SLC1A2) and glutamate transporter 1 (GLT-1) is a protein that in humans is encoded by the SLC1A2 gene. Alternatively spliced transcript variants of this gene have been described, but their full-length nature is not known.

<span class="mw-page-title-main">GRIA2</span> Mammalian protein found in Homo sapiens

Glutamate ionotropic receptor AMPA type subunit 2 is a protein that in humans is encoded by the GRIA2 gene and it is a subunit found in the AMPA receptors.

<span class="mw-page-title-main">ALS</span> Rare neurodegenerative disease

Amyotrophic lateral sclerosis (ALS), also known as motor neurone disease (MND) or Lou Gehrig's disease in the United States, is a rare and terminal neurodegenerative disease that results in the progressive loss of motor neurons that control voluntary muscles. ALS is the most common form of the motor neuron diseases. Early symptoms of ALS include stiff muscles, muscle twitches, gradual increasing weakness, and muscle wasting. Limb-onset ALS begins with weakness in the arms or legs, while bulbar-onset ALS begins with difficulty in speaking or swallowing. Around half of people with ALS develop at least mild difficulties with thinking and behavior, and about 15% develop frontotemporal dementia. Motor neuron loss continues until the abilities to eat, speak, move, or, lastly, breathe are lost.

<span class="mw-page-title-main">Perampanel</span> Anti-epileptic medication

Perampanel, sold under the brand name Fycompa, is an anti-epileptic medication developed by Eisai Co. that is used in addition to other drugs to treat partial seizures and generalized tonic-clonic seizures for people older than twelve years. It was first approved in 2012, and as of 2016, its optimal role in the treatment of epilepsy relative to other drugs was not clear. It was the first antiepileptic drug in the class of selective non-competitive antagonist of AMPA receptors.

Ozanezumab is a monoclonal antibody designed for the treatment of ALS and multiple sclerosis.

<span class="mw-page-title-main">Willardiine</span> Chemical compound

Willardiine (correctly spelled with two successive i's) or (S)-1-(2-amino-2-carboxyethyl)pyrimidine-2,4-dione is a chemical compound that occurs naturally in the seeds of Mariosousa willardiana and Acacia sensu lato. The seedlings of these plants contain enzymes capable of complex chemical substitutions that result in the formation of free amino acids (See:#Synthesis). Willardiine is frequently studied for its function in higher level plants. Additionally, many derivates of willardiine are researched for their potential in pharmaceutical development. Willardiine was first discovered in 1959 by R. Gmelin, when he isolated several free, non-protein amino acids from Acacia willardiana (another name for Mariosousa willardiana) when he was studying how these families of plants synthesize uracilyalanines. A related compound, Isowillardiine, was concurrently isolated by a different group, and it was discovered that the two compounds had different structural and functional properties. Subsequent research on willardiine has focused on the functional significance of different substitutions at the nitrogen group and the development of analogs of willardiine with different pharmacokinetic properties. In general, Willardiine is the one of the first compounds studied in which slight changes to molecular structure result in compounds with significantly different pharmacokinetic properties.

<span class="mw-page-title-main">TAK-653</span> Experimental antidepressant

TAK-653 is an experimental drug being investigated as a treatment for treatment-resistant depression. It is being developed by Takeda Pharmaceuticals.

References

  1. Luszczki JJ (2009). "Third-generation antiepileptic drugs: mechanisms of action, pharmacokinetics and interactions". Pharmacological Reports. 61 (2): 197–216. doi:10.1016/s1734-1140(09)70024-6. PMID   19443931. S2CID   72918370.
  2. Bialer M, Johannessen SI, Kupferberg HJ, Levy RH, Perucca E, Tomson T (January 2007). "Progress report on new antiepileptic drugs: a summary of the Eigth[ sic ] Eilat Conference (EILAT VIII)". Epilepsy Research. 73 (1): 1–52. doi:10.1016/j.eplepsyres.2006.10.008. PMID   17158031. S2CID   45026113.
  3. Iwamoto FM, Kreisl TN, Kim L, Duic JP, Butman JA, Albert PS, Fine HA (April 2010). "Phase 2 trial of talampanel, a glutamate receptor inhibitor, for adults with recurrent malignant gliomas". Cancer. 116 (7): 1776–1782. doi:10.1002/cncr.24957. PMC   2846997 . PMID   20143438.
  4. Pascuzzi RM, Shefner J, Chappell AS, Bjerke JS, Tamura R, Chaudhry V, et al. (May 2010). "A phase II trial of talampanel in subjects with amyotrophic lateral sclerosis". Amyotrophic Lateral Sclerosis. 11 (3): 266–271. doi:10.3109/17482960903307805. PMID   19961264. S2CID   7388452.
  5. "Talampanel Trial". alsa.org. May 2010. Archived from the original on 2011-03-23.
  6. Aujla PK, Fetell MR, Jensen FE (April 2009). "Talampanel suppresses the acute and chronic effects of seizures in a rodent neonatal seizure model". Epilepsia. 50 (4): 694–701. doi:10.1111/j.1528-1167.2008.01947.x. PMC   2672962 . PMID   19220413.
  7. Lee K, Goodman L, Fourie C, Schenk S, Leitch B, Montgomery JM (2016). "AMPA Receptors as Therapeutic Targets for Neurological Disorders". Ion Channels as Therapeutic Targets, Part A. Advances in Protein Chemistry and Structural Biology. Vol. 103. pp. 203–261. doi:10.1016/bs.apcsb.2015.10.004. ISBN   9780128047941. PMID   26920691.