Metal nitrosyl complex

Last updated
Sodium nitroprusside, a medicinally significant metal nitrosyl-pentacyanoferrate (Fe-III) compound, used to treat hypertension. Sodium-nitroprusside-2D.png
Sodium nitroprusside, a medicinally significant metal nitrosyl-pentacyanoferrate (Fe-III) compound, used to treat hypertension.

Metal nitrosyl complexes are complexes that contain nitric oxide, NO, bonded to a transition metal. [2] Many kinds of nitrosyl complexes are known, which vary both in structure and coligand.

Contents

Bonding and structure

(Top) the HOMO and LUMO of CO. (Middle) Sigma bond. (Bottom) Back-bond. Back bonding.png
(Top) the HOMO and LUMO of CO. (Middle) Sigma bond. (Bottom) Back-bond.

Most complexes containing the NO ligand can be viewed as derivatives of the nitrosyl cation, NO+. The nitrosyl cation is isoelectronic with carbon monoxide, thus the bonding between a nitrosyl ligand and a metal follows the same principles as the bonding in carbonyl complexes. The nitrosyl cation serves as a two-electron donor to the metal and accepts electrons from the metal via back-bonding. The compounds Co(NO)(CO)3 and Ni(CO)4 illustrate the analogy between NO+ and CO. In an electron-counting sense, two linear NO ligands are equivalent to three CO groups. This trend is illustrated by the isoelectronic pair Fe(CO)2(NO)2 and [Ni(CO)4]. [3] These complexes are isoelectronic and, incidentally, both obey the 18-electron rule. The formal description of nitric oxide as NO+ does not match certain measureable and calculated properties. In an alternative description, nitric oxide serves as a 3-electron donor, and the metal-nitrogen interaction is a triple bond.

linear and bent M-NO bonds Metal-nitrosyl-coordination-modes-2D.png
linear and bent M-NO bonds

Linear vs bent nitrosyl ligands

The M-N-O unit in nitrosyl complexes is usually linear, or no more than 15° from linear. In some complexes, however, especially when back-bonding is less important, the M-N-O angle can strongly deviate from 180°. Linear and bent NO ligands can be distinguished using infrared spectroscopy. Linear M-N-O groups absorb in the range 1650–1900 cm−1, whereas bent nitrosyls absorb in the range 1525–1690 cm−1. The differing vibrational frequencies reflect the differing N-O bond orders for linear (triple bond) and bent NO (double bond).

The bent NO ligand is sometimes described as the anion, NO. Prototypes for such compounds are the organic nitroso compounds, such as nitrosobenzene. A complex with a bent NO ligand is trans-[Co(en)2(NO)Cl]+. The NO is also common for alkali-metal or alkaline-earth metal-NO molecules. For example. LiNO and BeNO bear Li+NO and Be+NO ionic form. [4] [5]

The adoption of linear vs bent bonding can be analyzed with the Enemark-Feltham notation. [6] In their framework, the factor that determines the bent vs linear NO ligands is the sum of electrons of pi-symmetry. Complexes with "pi-electrons" in excess of 6 tend to have bent NO ligands. Thus, [Co(en)2(NO)Cl]+, with eight electrons of pi-symmetry (six in t2g orbitals and two on NO, {CoNO}8), adopts a bent NO ligand, whereas [Fe(CN)5(NO)]2−, with six electrons of pi-symmetry, {FeNO}6), adopts a linear nitrosyl. In a further illustration, the {MNO} d-electron count of the [Cr(CN)5NO]3 anion is shown. In this example, the cyanide ligands are "innocent", i.e., they have a charge of 1 each, 5 total. To balance the fragment's overall charge, the charge on {CrNO} is thus +2 (3 = 5 + 2). Using the neutral electron counting scheme, Cr has 6 d electrons and NO· has one electron for a total of 7. Two electrons are subtracted to take into account that fragment's overall charge of +2, to give 5. Written in the Enemark-Feltham notation, the d electron count is {CrNO}5. The results are the same if the nitrosyl ligand were considered NO+ or NO. [6]

Bridging nitrosyl ligands

Nitric oxide can also serve as a bridging ligand. In the compound [Mn35C5H5)32-NO)33-NO)], three NO groups bridge two metal centres and one NO group bridge to all three. [3]

Isonitrosyl ligands

Structure of the isonitrosyl complex [Ru(Cl)(ON)(pyridine)4] (color code: red (O), blue (N), gray (C), dark green (Ru), green (Cl)). Structure of Ru(Cl)(ON)(pyridine)4+ (9RUKQOE02).png
Structure of the isonitrosyl complex [Ru(Cl)(ON)(pyridine)4] (color code: red (O), blue (N), gray (C), dark green (Ru), green (Cl)).

Usually only of transient existence, complexes of isonitrosyl ligands are known where the NO is coordinated by its oxygen atom. They can be generated by UV-irradiation of nitrosyl complexes. [7]

Representative classes of compounds

Homoleptic nitrosyl complexes

Metal complexes containing only nitrosyl ligands are called isoleptic nitrosyls. They are rare, the premier member being Cr(NO)4. [8] Even trinitrosyl complexes are uncommon, whereas polycarbonyl complexes are routine.

Roussin red and black salts

One of the earliest examples of a nitrosyl complex to be synthesized is Roussin's red salt, which is a sodium salt of the anion [Fe2(NO)4S2]2−. The structure of the anion can be viewed as consisting of two tetrahedra sharing an edge. Each iron atom is bonded linearly to two NO+ ligands and shares two bridging sulfidi ligands with the other iron atom. Roussin's black salt has a more complex cluster structure. The anion in this species has the formula [Fe4(NO)7S3]. It has C3v symmetry. It consists of a tetrahedron of iron atoms with sulfide ions on three faces of the tetrahedron. Three iron atoms are bonded to two nitrosyl groups. The iron atom on the threefold symmetry axis has a single nitrosyl group which also lies on that axis.

Preparation

Many nitrosyl complexes are quite stable, thus many methods can be used for their synthesis. [9]

From NO

Nitrosyl complexes are traditionally prepared by treating metal complexes with nitric oxide. The method is mainly used with reduced precursors. Illustrative is the nitrosylation of cobalt carbonyl to give cobalt tricarbonyl nitrosyl: [10]

Co2(CO)8 + 2 NO → 2 CoNO(CO)3 + 2 CO

From NO+ and NOCl

Replacement of ligands by the nitrosyl cation may be accomplished using nitrosyl tetrafluoroborate. This reagent has been applied to the hexacarbonyls of molybdenum and tungsten: [11] [12]

M(CO)6 + 4 MeCN + 2 NOBF4 → [M(NO)2(MeCN)4](BF4)2

Nitrosyl chloride and molybdenum hexacarbonyl react to give [Mo(NO)2Cl2]n. [13] Diazald is also used as an NO source. [14]

From hydroxylamine

Hydroxylamine is a source of nitric oxide anion via a disproportionation: [15]

K2[Ni(CN)4] + 2 NH2OH + KOH → K2[Ni(CN)3)NO] + NH3 + 2 H2O + KCN

From nitric acid

Nitric acid is a source of nitric oxide complexes, although the details are obscure. Probably relevant is the conventional self-dehydration of nitric acid:

2 HNO3 → NO2+NO3 + H2O

Nitric acid is used in some preparations of nitroprusside from ferrocyanide:

HNO3 + [Fe(CN)6]4- → [Fe(CN)5(NO)]2- + OH + OCN

From nitrous acid

Some anionic nitrito complexes undergo acid-induced deoxygenation to give the linear nitrosyl complex.

[LnMNO2] + H+ → [LnMNO] + OH

The reaction is reversible in some cases.

Oxidation of ammine complexes

In some metal-ammine complexes, the ammonia ligand can be oxidized to nitrosyl: [16]

H2O + [Ru(terpy)(bipy)(NH3)]+ → [Ru(terpy)(bipy)(NO)]2+ + 5 H+ + 6 e

Reactions

An important reaction is the acid/base equilibrium, yielding transition metal nitrite complexes:

[LnMNO]2+ + 2OH LnMNO2 + H2O

This equilibrium serves to confirm that the linear nitrosyl ligand is, formally, NO+, with nitrogen in the oxidation state +3

NO+ + 2 OH NO2 + H2O

Since nitrogen is more electronegative than carbon, metal-nitrosyl complexes tend to be more electrophilic than related metal carbonyl complexes. Nucleophiles often add to the nitrogen. [2] The nitrogen atom in bent metal nitrosyls is basic, thus can be oxidized, alkylated, and protonated, e.g.:

(Ph3P)2(CO)ClOsNO + HCl → (Ph3P)2(CO)ClOsN(H)O

In rare cases, NO is cleaved by metal centers:

Cp 2NbMe2 + NO → Cp2(Me)Nb(O)NMe
2 Cp2(Me)Nb(O)NMe → 2 Cp2Nb(O)Me + ½MeN=NMe
Nitrosylation of a heme-thiolate, steps in cell signaling by nitric oxide (porphyrin is depicted as the square). Fe-NO-porph.png
Nitrosylation of a heme-thiolate, steps in cell signaling by nitric oxide (porphyrin is depicted as the square).

Applications

Metal-nitrosyls are assumed to be intermediates in catalytic converters, which reduce the emission of NOx from internal combustion engines. This application has been described as "one of the most successful stories in the development of catalysts." [18]

Structure of a dinitrosyl iron complex (DNIC). DNIC structure.svg
Structure of a dinitrosyl iron complex (DNIC).

Metal-catalyzed reactions of NO are not often useful in organic chemistry. In biology and medicine, nitric oxide is however an important signalling molecule in nature and this fact is the basis of the most important applications of metal nitrosyls. The nitroprusside anion, [Fe(CN)5NO]2−, a mixed nitrosyl cyano complex, has pharmaceutical applications as a slow release agent for NO. The signalling function of NO is effected via its complexation to haem proteins, where it binds in the bent geometry. Nitric oxide also attacks iron-sulfur proteins giving dinitrosyl iron complexes.

Thionitrosyls

Several complexes are known with NS ligands. Like nitrosyls, thionitrosyls exist as both linear and bent geometries. [20]

Related Research Articles

<span class="mw-page-title-main">Coordination complex</span> Molecule or ion containing ligands datively bonded to a central metallic atom

A coordination complex is a chemical compound consisting of a central atom or ion, which is usually metallic and is called the coordination centre, and a surrounding array of bound molecules or ions, that are in turn known as ligands or complexing agents. Many metal-containing compounds, especially those that include transition metals, are coordination complexes.

In chemistry, electron counting is a formalism for assigning a number of valence electrons to individual atoms in a molecule. It is used for classifying compounds and for explaining or predicting their electronic structure and bonding. Many rules in chemistry rely on electron-counting:

<span class="mw-page-title-main">Metallocene</span> Type of compound having a metal center

A metallocene is a compound typically consisting of two cyclopentadienyl anions (C
5
H
5
, abbreviated Cp) bound to a metal center (M) in the oxidation state II, with the resulting general formula (C5H5)2M. Closely related to the metallocenes are the metallocene derivatives, e.g. titanocene dichloride or vanadocene dichloride. Certain metallocenes and their derivatives exhibit catalytic properties, although metallocenes are rarely used industrially. Cationic group 4 metallocene derivatives related to [Cp2ZrCH3]+ catalyze olefin polymerization.

In chemistry, π backbonding is a π-bonding interaction between a filled (or half filled) orbital of a transition metal atom and a vacant orbital on an adjacent ion or molecule. In this type of interaction, electrons from the metal are used to bond to the ligand, which dissipates excess negative charge and stabilizes the metal. It is common in transition metals with low oxidation states that have ligands such as carbon monoxide, olefins, or phosphines. The ligands involved in π backbonding can be broken into three groups: carbonyls and nitrogen analogs, alkenes and alkynes, and phosphines. Compounds where π backbonding is prominent include Ni(CO)4, Zeise's salt, and molybdenym and iron dinitrogen complexes.

The nitrosonium ion is NO+, in which the nitrogen atom is bonded to an oxygen atom with a bond order of 3, and the overall diatomic species bears a positive charge. It can be viewed as nitric oxide with one electron removed. This ion is usually obtained as the following salts: NOClO4, NOSO4H (nitrosylsulfuric acid, more descriptively written ONSO3OH) and NOBF4. The ClO−4 and BF−4 salts are slightly soluble in acetonitrile CH3CN. NOBF4 can be purified by sublimation at 200–250 °C and 0.01 mmHg (1.3 Pa).

<span class="mw-page-title-main">Metal carbonyl</span> Coordination complexes of transition metals with carbon monoxide ligands

Metal carbonyls are coordination complexes of transition metals with carbon monoxide ligands. Metal carbonyls are useful in organic synthesis and as catalysts or catalyst precursors in homogeneous catalysis, such as hydroformylation and Reppe chemistry. In the Mond process, nickel tetracarbonyl is used to produce pure nickel. In organometallic chemistry, metal carbonyls serve as precursors for the preparation of other organometallic complexes.

The 18-electron rule is a chemical rule of thumb used primarily for predicting and rationalizing formulas for stable transition metal complexes, especially organometallic compounds. The rule is based on the fact that the valence orbitals in the electron configuration of transition metals consist of five (n−1)d orbitals, one ns orbital, and three np orbitals, where n is the principal quantum number. These orbitals can collectively accommodate 18 electrons as either bonding or non-bonding electron pairs. This means that the combination of these nine atomic orbitals with ligand orbitals creates nine molecular orbitals that are either metal-ligand bonding or non-bonding. When a metal complex has 18 valence electrons, it is said to have achieved the same electron configuration as the noble gas in the period, lending stability to the complex. Transition metal complexes that deviate from the rule are often interesting or useful because they tend to be more reactive. The rule is not helpful for complexes of metals that are not transition metals. The rule was first proposed by American chemist Irving Langmuir in 1921.

The chemical element nitrogen is one of the most abundant elements in the universe and can form many compounds. It can take several oxidation states; but the most common oxidation states are -3 and +3. Nitrogen can form nitride and nitrate ions. It also forms a part of nitric acid and nitrate salts. Nitrogen compounds also have an important role in organic chemistry, as nitrogen is part of proteins, amino acids and adenosine triphosphate.

Iron shows the characteristic chemical properties of the transition metals, namely the ability to form variable oxidation states differing by steps of one and a very large coordination and organometallic chemistry: indeed, it was the discovery of an iron compound, ferrocene, that revolutionalized the latter field in the 1950s. Iron is sometimes considered as a prototype for the entire block of transition metals, due to its abundance and the immense role it has played in the technological progress of humanity. Its 26 electrons are arranged in the configuration [Ar]3d64s2, of which the 3d and 4s electrons are relatively close in energy, and thus it can lose a variable number of electrons and there is no clear point where further ionization becomes unprofitable.

In chemistry, a (redox) non-innocent ligand is a ligand in a metal complex where the oxidation state is not clear. Typically, complexes containing non-innocent ligands are redox active at mild potentials. The concept assumes that redox reactions in metal complexes are either metal or ligand localized, which is a simplification, albeit a useful one.

<span class="mw-page-title-main">Roussin's red salt</span> Chemical compound

Roussin's red salt is the inorganic compound with the formula K2[Fe2S2(NO)4]. This metal nitrosyl was first described by Zacharie Roussin in 1858, making it one of the first synthetic iron-sulfur clusters.

<span class="mw-page-title-main">Metal–ligand multiple bond</span> Chemical interaction of certain ligands with metals of bond order >1

In organometallic chemistry, a metal–ligand multiple bond describes the interaction of certain ligands with a metal with a bond order greater than one. Coordination complexes featuring multiply bonded ligands are of both scholarly and practical interest. transition metal carbene complexes catalyze the olefin metathesis reaction. Metal oxo intermediates are pervasive in oxidation catalysis.

Cyanometallates or cyanometalates are a class of coordination compounds, most often consisting only of cyanide ligands. Most are anions. Cyanide is a highly basic and small ligand, hence it readily saturates the coordination sphere of metal ions. The resulting cyanometallate anions are often used as building blocks for more complex structures called coordination polymers, the best known example of which is Prussian blue, a common dyestuff.

<span class="mw-page-title-main">Sodium nitroprusside</span> Medication for lowering blood pressure

Sodium nitroprusside (SNP), sold under the brand name Nitropress among others, is a medication used to lower blood pressure. This may be done if the blood pressure is very high and resulting in symptoms, in certain types of heart failure, and during surgery to decrease bleeding. It is used by continuous injection into a vein. Onset is nearly immediate and effects last for up to ten minutes.

<span class="mw-page-title-main">Transition metal nitrile complexes</span> Class of coordination compounds containing nitrile ligands (coordinating via N)

Transition metal nitrile complexes are coordination compounds containing nitrile ligands. Because nitriles are weakly basic, the nitrile ligands in these complexes are often labile.

<span class="mw-page-title-main">Dinitrosyl iron complex</span>

In biochemistry, dinitrosyl iron complexes (DNIC's) are coordination complexes with the formula [Fe(NO)2(SR)2]. Together with Roussin esters (Fe2(NO)4(SR)2), they result from the degradation of iron-sulfur proteins by nitric oxide. Commonly the thiolate ligands are cysteinyl residues or glutathione. These metal nitrosyl complexes have attracted much attention because they serve as biochemical signals in response to oxidative stress, manifested in the formation of NO. The anions are tetrahedral.

<span class="mw-page-title-main">Transition metal nitrite complex</span> Chemical complexes containing one or more –NO₂ ligands

In organometallic chemistry, transition metal complexes of nitrite describes families of coordination complexes containing one or more nitrite ligands. Although the synthetic derivatives are only of scholarly interest, metal-nitrite complexes occur in several enzymes that participate in the nitrogen cycle.

<span class="mw-page-title-main">Transition metal nitrate complex</span> Compound of nitrate ligands

A transition metal nitrate complex is a coordination compound containing one or more nitrate ligands. Such complexes are common starting reagents for the preparation of other compounds.

<span class="mw-page-title-main">Transition metal azide complex</span>

Transition metal azide complexes are coordination complexes containing one or more azide (N3) ligands.

<span class="mw-page-title-main">Transition metal sulfate complex</span> Coordination complexes with one or more sulfate ligands

Transition metal sulfate complexes or sulfato complexes are coordination complexes with one or more sulfate ligands. Sulfate binds to metals through one, two, three, or all four oxygen atoms. Common are complexes where sulfate is unidentate or chelating bidentate. Examples are respectively [Co(tren)(NH3)(SO4)]+ (tren = tris(2-aminoethyl)amine) and Co(phen)2SO4. All four oxygen atoms of sulfate bond to metals in some Dawson-type polyoxometalates, e.g. [S2Mo18O62]4-.

References

  1. "Sodium Nitroprusside". www.drugs.com. The American Society of Health-System Pharmacists. Retrieved 21 October 2022.
  2. 1 2 Hayton, T. W.; Legzdins, P.; Sharp, W. B. (2002). "Coordination and Organometallic Chemistry of Metal-NO Complexes". Chem. Rev. 102 (1): 935–991. doi:10.1021/cr000074t. PMID   11942784.
  3. 1 2 Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. pp. 447–453. ISBN   978-0-08-037941-8.
  4. Ariyarathna, Isuru R.; Miliordos, Evangelos (15 July 2019). "Electronic and geometric structure analysis of neutral and anionic metal nitric chalcogens: The case of MNX series (M=Li, Na, Be and X=O, S, Se, Te)". Journal of Computational Chemistry. 40 (19): 1740–1751. doi:10.1002/jcc.25829. PMID   30920017. S2CID   85546245.
  5. Ariyarathna, Isuru (1 March 2021). "First Principle Studies on Ground and Excited Electronic States: Chemical Bonding in Main-Group Molecules, Molecular Systems with Diffuse Electrons, and Water Activation using Transition Metal Monoxides".
  6. 1 2 Enemark, J. H.; Feltham, R. D. (1974). "Principles of structure, bonding, and reactivity for metal nitrosyl complexes". Coord. Chem. Rev. 1974 (13): 339–406. doi:10.1016/S0010-8545(00)80259-3.
  7. Mikhailov, Artem A.; Wenger, Emmanuel; Kostin, Gennadiy A.; Schaniel, Dominik (2019). "Room‐Temperature Photogeneration of Nitrosyl Linkage Isomers in Ruthenium Nitrosyl Complexes" (PDF). Chemistry – A European Journal. 25 (31): 7569–7574. doi:10.1002/chem.201901205. PMID   30957917. S2CID   102349334.
  8. Herberhold Max (1972). "Tetranitrosylchromium [Cr(NO)4]". Angewandte Chemie International Edition in English. 11 (12): 1092–1094. doi:10.1002/anie.197210921.
  9. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 449. ISBN   978-0-08-037941-8.
  10. Paul Gilmont; Arthur A. Blanchard (1946). "Dicobalt Octacarbonyl, Cobalt Nitrosyl Tricarbonyl, and Cobalt Tetracarbomyl Hydride". Inorganic Syntheses. Vol. 2. p. 238. doi:10.1002/9780470132333.ch76. ISBN   978-0-470-13233-3.
  11. Richard R. Thomas; Ayusman Sen (1990). "Acetonitrile Complexes of Selected Transition Metal Cations". Inorganic Syntheses. Vol. 28. pp. 63–67. doi:10.1002/9780470132593.ch14. ISBN   978-0-470-13259-3.
  12. Francine Agbossou; Edward J. O'Connor; Charles M. Garner; N. Quirós Méndez; Jesús M. Fernández; Alan T. Patton; James A. Ramsden; J. A. Gladysz; Joseph M. O'Connor; Tracy Tajima; Kevin P. Gable (1992). "Cyclopentadienyl Rhenium Complexes". Inorganic Syntheses. Vol. 29. pp. 211–225. doi:10.1002/9780470132609.ch51. ISBN   978-0-470-13260-9.
  13. B. F. G. Johnson; K. H. Al‐Obadi (1970). "Dihalogenodinitrosylmolybdenum and Dihalogenodinitrosyltungsten". Inorganic Syntheses. Vol. 12. pp. 264–266. doi:10.1002/9780470132432.ch47. ISBN   978-0-470-13243-2.
  14. James K. Hoyano; Peter Legzdins; John T. Malito (1978). "(η 5 ‐Cyclopentadienydnitrosyl Complexes of Chromium, Molybdenum, and Jungsten". Inorganic Syntheses. Vol. 13. pp. 126–131. doi:10.1002/9780470132494.ch21. ISBN   978-0-470-13249-4.
  15. Greenwood, Norman N.; Earnshaw, Alan (1984). Chemistry of the Elements. Oxford: Pergamon Press. p. 516. ISBN   978-0-08-022057-4.
  16. Dunn, Peter L.; Cook, Brian J.; Johnson, Samantha I.; Appel, Aaron M.; Bullock, R. Morris (2020). "Oxidation of Ammonia with Molecular Complexes". Journal of the American Chemical Society. 142 (42): 17845–17858. doi:10.1021/jacs.0c08269. OSTI   1706682. PMID   32977718. S2CID   221938378.
  17. Walker, F. A. (2005). "Nitric Oxide Interaction with Insect Nitrophorins and Thoughts on the Electron Configuration of the FeNO6 Complex". J. Inorg. Biochem. 99 (1): 216–236. doi:10.1016/j.jinorgbio.2004.10.009. PMID   15598503.
  18. Kaspar, Jan; Fornasiero, Paolo; Hickey, Neal (2003). "Automotive Catalytic Converters: Current Status and Some Perspectives". Catalysis Today. 77 (4): 419–449. doi:10.1016/S0920-5861(02)00384-X.
  19. Jessica Fitzpatrick; Eunsuk Kim (2015). "Synthetic Modeling Chemistry of Iron–Sulfur Clusters in Nitric Oxide Signaling". Acc. Chem. Res. 48 (8): 2453–2461. doi:10.1021/acs.accounts.5b00246. PMID   26197209.
  20. Ng, Ho-Yuen; Cheung, Wai-Man; Kwan Huang, Enrique; Wong, Kang-Long; Sung, Herman H.-Y.; Williams, Ian D.; Leung, Wa-Hung (2015). "Ruthenium chalcogenonitrosyl and bridged nitrido complexes containing chelating sulfur and oxygen ligands". Dalton Transactions. 44 (42): 18459–18468. doi:10.1039/C5DT02513C. PMID   26442594.