Transition metal silyl complexes

Last updated

In chemistry, transition metal silyl complexes describe coordination complexes in which a transition metal is bonded to an anionic silyl ligand, forming a metal-silicon sigma bond. This class of complexes are numerous and some are technologically significant as intermediates in hydrosilylation. [1] These complexes are a subset of organosilicon compounds.

Contents

Synthesis

From silyl halides

The first examples were prepared by treatment of sodium cyclopentadienyliron dicarbonyl with trimethylsilyl chloride: [2]

(C5H5)Fe(CO)2Na + Me3SiCl → (C5H5)Fe(CO)2SiMe3 + NaCl

A related reaction is the oxidative addition of silyl halides.

From hydrosilanes

Oxidative addition of hydrosilane, showing proposed intermediate. ArrestedOAofSiH.png
Oxidative addition of hydrosilane, showing proposed intermediate.

Hydrosilanes oxidatively add to low-valent metal complexes to give silyl metal hydrides. Such species are assumed to be intermediates in hydrosilylation catalysis. The oxidative addition is preceded by the association of the intact hydrosilane with the unsaturated metal center, affording a sigma-silane complex, as discussed below.

Sigma bond metathesis can occur when hydrosilanes are treated with early metals alkyls. Using the Petasis reagent, a cyclic dititanium complex is produced with elimination of methane (Me = CH3, Ph = C6H5):

2 (C5H5)2TiMe2 + 2 Ph2SiH2 → [(C5H5)2TiSiPh2]2 + 4 MeH

Oxidative addition of Si-Si bonds

Low valent metals insert into the Si-Si bond of disilanes. The main limitation of this reaction is the paucity of disilanes as reagents.

Silyl complexes with Si-Si bonds

Beyond simple ligands like SiR3-, silyl ligands with Si-Si bonds are known. (C5H5)Fe(CO)2-SiMe2SiPh3 is one example (Me = CH3, Ph = C6H5). [3] Another example is the metalacycle derived from titanocene dichloride, (C5H5)2Ti(SiPh2)5. [4]

Silane complexes

Structure of (MeC5H4)Mn(CO)(PMe3)(e -H2SiPh2, a sigma complex of diphenylsilane. Selected distances: Si-Mn = 325, H-Fe = 149, Si-H(Mn) = 177, Si-Hterminal = 135 picometer. MnSiH2.png
Structure of (MeC5H4)Mn(CO)(PMe3)(η -H2SiPh2, a sigma complex of diphenylsilane. Selected distances: Si-Mn = 325, H-Fe = 149, Si-H(Mn) = 177, Si-Hterminal = 135 picometer.

Transition metal silane complexes are coordination compounds containing hydrosilane ligands. An early example is (MeC5H4)Mn(CO)22-HSiPh3) (Ph = C6H5). [6]

The bonding in silane sigma complexes is similar to that invoked in agostic interactions. The metal center engages the Si-H entity via a 3-center, 2-electron bond. It is widely assumed that these sigma complexes are intermediates in the oxidative addition of hydrosilanes to give metal silyl hydrides. This transformation is invoked in hydrosilylation catalysis.

Evidence for sigma-silane complexes is provided by proton NMR spectroscopy. For (MeC5H4)Mn(CO)22-HSiPh3), J(29Si,1H) = 65 Hz compared to 180 Hz in free diphenylsilane. In silyl hydride complexes, the coupling in about 6 Hz. Neutron diffraction studies reveal a Si-H distance of 1.802(5) Å in the corresponding η2-HSiFPh2 complex vs 1.48 Å in free HSiFPh2. Elongated Si-H bonds are characteristic of these sigma complexes. [7]

Related Research Articles

<span class="mw-page-title-main">Organometallic chemistry</span> Study of organic compounds containing metal(s)

Organometallic chemistry is the study of organometallic compounds, chemical compounds containing at least one chemical bond between a carbon atom of an organic molecule and a metal, including alkali, alkaline earth, and transition metals, and sometimes broadened to include metalloids like boron, silicon, and selenium, as well. Aside from bonds to organyl fragments or molecules, bonds to 'inorganic' carbon, like carbon monoxide, cyanide, or carbide, are generally considered to be organometallic as well. Some related compounds such as transition metal hydrides and metal phosphine complexes are often included in discussions of organometallic compounds, though strictly speaking, they are not necessarily organometallic. The related but distinct term "metalorganic compound" refers to metal-containing compounds lacking direct metal-carbon bonds but which contain organic ligands. Metal β-diketonates, alkoxides, dialkylamides, and metal phosphine complexes are representative members of this class. The field of organometallic chemistry combines aspects of traditional inorganic and organic chemistry.

<span class="mw-page-title-main">Titanocene dichloride</span> Chemical compound

Titanocene dichloride is the organotitanium compound with the formula (η5-C5H5)2TiCl2, commonly abbreviated as Cp2TiCl2. This metallocene is a common reagent in organometallic and organic synthesis. It exists as a bright red solid that slowly hydrolyzes in air. It shows antitumour activity and was the first non-platinum complex to undergo clinical trials as a chemotherapy drug.

<span class="mw-page-title-main">Organosilicon chemistry</span> Organometallic compound containing carbon–silicon bonds

Organosilicon chemistry is the study of organometallic compounds containing carbon–silicon bonds, to which they are called organosilicon compounds. Most organosilicon compounds are similar to the ordinary organic compounds, being colourless, flammable, hydrophobic, and stable to air. Silicon carbide is an inorganic compound.

Transmetalation (alt. spelling: transmetallation) is a type of organometallic reaction that involves the transfer of ligands from one metal to another. It has the general form:

Hydrosilylation, also called catalytic hydrosilation, describes the addition of Si-H bonds across unsaturated bonds. Ordinarily the reaction is conducted catalytically and usually the substrates are unsaturated organic compounds. Alkenes and alkynes give alkyl and vinyl silanes; aldehydes and ketones give silyl ethers. Hydrosilylation has been called the "most important application of platinum in homogeneous catalysis."

Hydrosilanes are tetravalent silicon compounds containing one or more Si-H bond. The parent hydrosilane is silane (SiH4). Commonly, hydrosilane refers to organosilicon derivatives. Examples include phenylsilane (PhSiH3) and triethoxysilane ((C2H5O)3SiH). Polymers and oligomers terminated with hydrosilanes are resins that are used to make useful materials like caulks.

Transition metal hydrides are chemical compounds containing a transition metal bonded to hydrogen. Most transition metals form hydride complexes and some are significant in various catalytic and synthetic reactions. The term "hydride" is used loosely: some of them are acidic (e.g., H2Fe(CO)4), whereas some others are hydridic, having H-like character (e.g., ZnH2).

Reductions with hydrosilanes are methods used for hydrogenation and hydrogenolysis of organic compounds. The approach is a subset of ionic hydrogenation. In this particular method, the substrate is treated with a hydrosilane and auxiliary reagent, often a strong acid, resulting in formal transfer of hydride from silicon to carbon. This style of reduction with hydrosilanes enjoys diverse if specialized applications.

<span class="mw-page-title-main">Rhodocene</span> Organometallic chemical compound

Rhodocene is a chemical compound with the formula [Rh(C5H5)2]. Each molecule contains an atom of rhodium bound between two planar aromatic systems of five carbon atoms known as cyclopentadienyl rings in a sandwich arrangement. It is an organometallic compound as it has (haptic) covalent rhodium–carbon bonds. The [Rh(C5H5)2] radical is found above 150 °C (302 °F) or when trapped by cooling to liquid nitrogen temperatures (−196 °C [−321 °F]). At room temperature, pairs of these radicals join via their cyclopentadienyl rings to form a dimer, a yellow solid.

In organometallic chemistry, metal sulfur dioxide complexes are complexes that contain sulfur dioxide, SO2, bonded to a transition metal. Such compounds are common but are mainly of theoretical interest. Historically, the study of these compounds has provided insights into the mechanisms of migratory insertion reactions.

The dehydrogenative coupling of silanes is a reaction type for the formation of Si-Si bonds. Although never commercialized, the reaction has been demonstrated for the synthesis of certain disilanes as well as polysilanes. These reactions generally require catalysts.

<span class="mw-page-title-main">Sigma complex</span>

In chemistry, a sigma complex or σ-complex usually refers to a family of coordination complexes where one or more ligand interacts with the metal using the bonding electrons in a sigma bond. Dihydrogen complexes are examples. Transition metal silane complexes are often especially stable sigma complexes. A subset of sigma complexes are agostic complexes, where a C-H sigma bond functions as the donor ligand. In some cases, even C-C bonds function as sigma ligands. Sigma complexes are of great mechanistic significance, despite their frequent fragility. They represent an initial interaction between the metal center and saturated substrates. Sigma complexes are generally assumed to be intermediates prior to full oxidative addition.

<span class="mw-page-title-main">Lanthanocene</span>

A lanthanocene is a type of metallocene compound that contains an element from the lanthanide series. The most common lanthanocene complexes contain two cyclopentadienyl anions and an X type ligand, usually hydride or alkyl ligand.

<span class="mw-page-title-main">Tris(trimethylsilyl)silane</span> Chemical compound

Tris(trimethylsilyl)silane is the organosilicon compound with the formula (Me3Si)3SiH (where Me = CH3). It is a colorless liquid that is classified as a hydrosilane since it contains an Si-H bond. The compound is notable as having a weak Si-H bond, with a bond dissociation energy estimated at 84 kcal/mol. For comparison, the Si-H bond in trimethylsilane is 94 kcal/mol. With such a weak bond, the compound is used as a reagent to deliver hydrogen atoms. The compound has been described as an environmentally benign analogue of tributyltin hydride.

<span class="mw-page-title-main">Transition metal complexes of aldehydes and ketones</span>

Transition metal complexes of aldehydes and ketones describes coordination complexes with aldehyde (RCHO) and ketone (R2CO) ligands. Because aldehydes and ketones are common, the area is of fundamental interest. Some reactions that are useful in organic chemistry involve such complexes.

<span class="mw-page-title-main">Transition metal acyl complexes</span>

Transition metal acyl complexes describes organometallic complexes containing one or more acyl (RCO) ligands. Such compounds occur as transient intermediates in many industrially useful reactions, especially carbonylations.

<span class="mw-page-title-main">Silanide</span> Anionic molecule derived from silane

A silanide is a chemical compound containing an anionic silicon(IV) centre, the parent ion being SiH−3. The hydrogen atoms can also be substituted to produce more complex derivative anions such as tris(trimethylsilyl)silanide (hypersilyl), tris(tert-butyl)silanide, tris(pentafluoroethyl)silanide, or triphenylsilanide. The simple silanide ion can also be called trihydridosilanide or silyl hydride.

Phosphanides are chemicals containing the [PH2] anion. This is also known as the phosphino anion or phosphido ligand. The IUPAC name can also be dihydridophosphate(1−).

The stabilization of bismuth's +3 oxidation state due to the inert pair effect yields a plethora of organometallic bismuth-transition metal compounds and clusters with interesting electronics and 3D structures.

<span class="mw-page-title-main">Pentakis(trimethylphosphine)tungsten</span> Chemical compound

Pentakis(trimethylphosphine)tungsten (W(PMe3)5, Me=CH3) and its physically relevant "tucked-in" isomer, [(dimethylphosphino-κP)methyl-κC]hydrotetrakis(trimethylphosphine)tungsten (W(PMe3)42-CH2PMe2)H), are organotungsten complexes. Formally, the former is a tungsten(0) complex, whereas the latter is a tungsten(II) complex. W(PMe3)42-CH2PMe2)H's tungsten center is electron-rich and, thus, prone to oxidation. W(PMe3)42-CH2PMe2)H has been used as a starting retron for some challenging chemistry, such as C-C bond activation, tungsten-chalcogenide multiple bonding, tungsten-tetrel multiple bonding, and desulfurization.

References

  1. Schubert, U. (1991). "Transition-metal silyl complexes". Transition Metal Chemistry. 16: 136–144. doi:10.1007/BF01127889. S2CID   98200527.
  2. Piper, T. S.; Lemal, D.; Wilkinson, G. (1956). "A silyliron compound; the iron-silicon sigma bond". Naturwissenschaften. 43: 129. doi:10.1007/bf00621565. S2CID   5828269.
  3. Párkányi, László; Pannell, Keith H.; Hernandez, Carlos (1983). "Organometalloidal Derivatives of the Transition Metals". Journal of Organometallic Chemistry. 252 (2): 127–132. doi:10.1016/0022-328X(83)80075-8.
  4. Igonin, V.A.; Ovchinnikov, Yu.E.; Dement'Ev, V.V.; Shklover, V.E.; Timofeeva, T.V.; Frunze, T.M.; Struchkov, Yu.T. (1989). "Crystal Structures of Cycloheteropentasilanes (η5-Cp)2Ti(SiPh2)5 and O(SiPh2)5". Journal of Organometallic Chemistry. 371 (2): 187–196. doi:10.1016/0022-328X(89)88025-8.
  5. Schubert, U.; Scholz, G.; Müller, J.; Ackermann, K.; Wörle, B.; Stansfield, R.F.D. (1986). "Hydrido-silyl-Komplexe". Journal of Organometallic Chemistry. 306 (3): 303–326. doi:10.1016/S0022-328X(00)98993-9.
  6. Corey, Joyce Y. (2011). "Reactions of Hydrosilanes with Transition Metal Complexes and Characterization of the Products". Chemical Reviews. 111: 863–1071. doi:10.1021/cr900359c. PMID   21250634.
  7. Nikonov, G. I. (2005). "Recent Advances in Nonclassical Interligand SiH Interactions". Adv. Organomet. Chem. 53: 217–309. doi:10.1016/s0065-3055(05)53006-5.