Transition metal porphyrin complexes

Last updated
A picket-fence porphyrin complex of Fe, with axial coordination sites occupied by methylimidazole (green) and dioxygen (R = amide groups). PicketFenceGenericRevised.png
A picket-fence porphyrin complex of Fe, with axial coordination sites occupied by methylimidazole (green) and dioxygen (R = amide groups).

Transition metal porphyrin complexes are a family of coordination complexes of the conjugate base of porphyrins. Iron porphyrin complexes occur widely in Nature, which has stimulated extensive studies on related synthetic complexes. The metal-porphyrin interaction is a strong one such that metalloporphyrins are thermally robust. [2] [3] They are catalysts and exhibit rich optical properties, although these complexes remain mainly of academic interest.

Contents

Structure

Side view of Fe(OEP)CS (ethyl groups removed for clarity), showing the highly planar nature of the porphyrin ring. In this case, Fe is elevated by 0.23 A above the N4 plane. In the related Fe(OEP)CS(pyridine) complex, the FeN4 groups are coplanar. CSD CIF BEPDEF.jpg
Side view of Fe(OEP)CS (ethyl groups removed for clarity), showing the highly planar nature of the porphyrin ring. In this case, Fe is elevated by 0.23 Å above the N4 plane. In the related Fe(OEP)CS(pyridine) complex, the FeN4 groups are coplanar.
Chemical structure of the bis(porphyrin) complex Zr(OEP)2. KORGIH.png
Chemical structure of the bis(porphyrin) complex Zr(OEP)2.

Porphyrin complexes consist of a square planar MN4 core. The periphery of the porphyrins, consisting of sp2-hybridized carbons, generally display only small deviations from planarity. [6] Additionally, the metal is often not centered in the N4 plane. [7]

Large metals such as zirconium, tantalum, and molybdenum tend to bind two porphyrin ligands. Some [M(OEP)]2 feature a multiple bonds between the metals. [8]

Formation

Metal porphyrin complexes are almost always prepared by direct reaction of a metal halide with the free porphyrin, abbreviated here as H2P:

MClx + H2P → M(P)Cl2−x + 2 HCl

Two pyrrole protons are lost. The porphyrin dianion is an L2X2 ligand.

These syntheses require somewhat forcing conditions, [9] consistent with the tight fit of the metal in the N42- "pocket." In nature, the insertion is mediated by chelatase enzymes. The insertion of a metal proceeds by the intermediacy of a "sitting atop complex" (SAC), whereby the entering metal interacts with only one or a few of the nitrogen centers. [10]


In contrast to natural porphyrins, synthetic porphyrin ligands are typically symmetrical (i.e., their dianionic conjugate bases). Two major varieties are well studied, those with substituents at the meso positions, the premier example being tetraphenylporphyrin. These ligands are easy to prepare in one-pot procedures. A large number of aryl groups can be deployed aside from phenyl.

A second class of synthetic porphyrins have hydrogen at the meso positions. Octaethylporphyrin (H2OEP) is the subject of many such studies. It is more expensive than tetraphenylporphyrin.

Protoporphyrin IX, which occurs naturally, can be modified by removal of the vinyl groups and esterification of the carboxylic acid groups to gives deuteroporphyin IX dimethyl ester. [11]

Biomimetic complexes

Protoporphyrin IX is the precursor to heme and closely related to chlorophyll. PPIXtransH.png
Protoporphyrin IX is the precursor to heme and closely related to chlorophyll.

Iron porphyrin complexes ("hemes") are the dominant metalloporphyrin complexes in nature. Consequently, synthetic iron porphyrin complexes are well investigated. Common derivatives are those of Fe(III) and Fe(II). Complexes of the type Fe(P)Cl are square-pyramidal and high spin with idealized C4v symmetry. Base hydrolysis affords the "mu-oxo dimers" with the formula [Fe(P)]2O. These complexes have been widely investigated as oxidation catalysts. [12] Typical stoichiometries of ferrous porphyrins are Fe(P)L2 where L is a neutral ligand such as pyridine and imidazole. Cobalt(II) porphyrins behave similarly to the ferrous derivatives. They bind O2 to form dioxygen complexes.

Synthetic applications

Catalysts based on synthetic metalloporphyrins have been extensively investigated, although few or no applications exist. Due to their distinctive redox properties, Co(II)–porphyrin-based systems are radical initiators. [13] [14] Some complexes emulate the action of various heme enzymes such as cytochrome P450, lignin peroxidase. [15] [16] Metalloporphyrins are also studied as catalysts for water splitting, with the purpose of generating molecular hydrogen and oxygen for fuel cells. [17]

In addition, porous organic polymers based on porphyrins, along with metal oxide nanoparticles, [18]

Supramolecular chemistry

On a gold surface porphyrin derivative molecules (a) form chains and clusters (b). Each cluster in (c,d) contains 4 or 5 molecules in the core and 8 or 10 molecules in the outer shells (STM images). Porphyrin on Au(111) STM.jpg
On a gold surface porphyrin derivative molecules (a) form chains and clusters (b). Each cluster in (c,d) contains 4 or 5 molecules in the core and 8 or 10 molecules in the outer shells (STM images).
An example of porphyrins involved in host-guest chemistry. Here, a four-porphyrin-zinc complex hosts a porphyrin guest. Host Guest Complex Porphyrin Sanders AngewChemIntEdEngl 1995 1096.jpg
An example of porphyrins involved in host–guest chemistry. Here, a four-porphyrin–zinc complex hosts a porphyrin guest.

Porphyrins are often used to construct structures in supramolecular chemistry. [21] These systems take advantage of the Lewis acidity of the metal, typically zinc. An example of a host–guest complex that was constructed from a macrocycle composed of four porphyrins. [20] A guest-free base porphyrin is bound to the center by coordination with its four-pyridine substituents.

See also

Related Research Articles

<span class="mw-page-title-main">Organometallic chemistry</span> Study of organic compounds containing metal(s)

Organometallic chemistry is the study of organometallic compounds, chemical compounds containing at least one chemical bond between a carbon atom of an organic molecule and a metal, including alkali, alkaline earth, and transition metals, and sometimes broadened to include metalloids like boron, silicon, and selenium, as well. Aside from bonds to organyl fragments or molecules, bonds to 'inorganic' carbon, like carbon monoxide, cyanide, or carbide, are generally considered to be organometallic as well. Some related compounds such as transition metal hydrides and metal phosphine complexes are often included in discussions of organometallic compounds, though strictly speaking, they are not necessarily organometallic. The related but distinct term "metalorganic compound" refers to metal-containing compounds lacking direct metal-carbon bonds but which contain organic ligands. Metal β-diketonates, alkoxides, dialkylamides, and metal phosphine complexes are representative members of this class. The field of organometallic chemistry combines aspects of traditional inorganic and organic chemistry.

Ferrocene is an organometallic compound with the formula Fe(C5H5)2. The molecule is a complex consisting of two cyclopentadienyl rings bound to a central iron atom. It is an orange solid with a camphor-like odor, that sublimes above room temperature, and is soluble in most organic solvents. It is remarkable for its stability: it is unaffected by air, water, strong bases, and can be heated to 400 °C without decomposition. In oxidizing conditions it can reversibly react with strong acids to form the ferrocenium cation Fe(C5H5)+2. Ferrocene and the ferrocenium cation are sometimes abbreviated as Fc and Fc+ respectively.

<span class="mw-page-title-main">Porphyrin</span> Heterocyclic organic compound with four modified pyrrole subunits

Porphyrins are a group of heterocyclic macrocycle organic compounds, composed of four modified pyrrole subunits interconnected at their α carbon atoms via methine bridges (=CH−). In vertebrates, an essential member of the porphyrin group is heme, which is a component of hemoproteins, whose functions include carrying oxygen in the bloodstream. In plants, an essential porphyrin derivative is chlorophyll, which is involved in light harvesting and electron transfer in photosynthesis.

<span class="mw-page-title-main">Metal carbonyl</span> Coordination complexes of transition metals with carbon monoxide ligands

Metal carbonyls are coordination complexes of transition metals with carbon monoxide ligands. Metal carbonyls are useful in organic synthesis and as catalysts or catalyst precursors in homogeneous catalysis, such as hydroformylation and Reppe chemistry. In the Mond process, nickel tetracarbonyl is used to produce pure nickel. In organometallic chemistry, metal carbonyls serve as precursors for the preparation of other organometallic complexes.

<span class="mw-page-title-main">Porphine</span> Chemical compound

Porphine or porphin is an organic compound of empirical formula C20H14N4. It is heterocyclic and aromatic. The molecule is a flat macrocycle, consisting of four pyrrole-like rings joined by four methine bridges, which makes it the simplest of the tetrapyrroles.

<span class="mw-page-title-main">Metal nitrosyl complex</span> Complex of a transition metal bonded to nitric oxide: Me–NO

Metal nitrosyl complexes are complexes that contain nitric oxide, NO, bonded to a transition metal. Many kinds of nitrosyl complexes are known, which vary both in structure and coligand.

A hydrogenase mimic or bio-mimetic is an enzyme mimic of hydrogenases.

In chemistry, a (redox) non-innocent ligand is a ligand in a metal complex where the oxidation state is not clear. Typically, complexes containing non-innocent ligands are redox active at mild potentials. The concept assumes that redox reactions in metal complexes are either metal or ligand localized, which is a simplification, albeit a useful one.

<span class="mw-page-title-main">Tetraphenylporphyrin</span> Chemical compound

Tetraphenylporphyrin, abbreviated TPP or H2TPP, is a synthetic heterocyclic compound that resembles naturally occurring porphyrins. Porphyrins are dyes and cofactors found in hemoglobin and cytochromes and are related to chlorophyll and vitamin B12. The study of naturally occurring porphyrins is complicated by their low symmetry and the presence of polar substituents. Tetraphenylporphyrin is hydrophobic, symmetrically substituted, and easily synthesized. The compound is a dark purple solid that dissolves in nonpolar organic solvents such as chloroform and benzene.

Organoiron chemistry is the chemistry of iron compounds containing a carbon-to-iron chemical bond. Organoiron compounds are relevant in organic synthesis as reagents such as iron pentacarbonyl, diiron nonacarbonyl and disodium tetracarbonylferrate. While iron adopts oxidation states from Fe(−II) through to Fe(VII), Fe(IV) is the highest established oxidation state for organoiron species. Although iron is generally less active in many catalytic applications, it is less expensive and "greener" than other metals. Organoiron compounds feature a wide range of ligands that support the Fe-C bond; as with other organometals, these supporting ligands prominently include phosphines, carbon monoxide, and cyclopentadienyl, but hard ligands such as amines are employed as well.

Dioxygen complexes are coordination compounds that contain O2 as a ligand. The study of these compounds is inspired by oxygen-carrying proteins such as myoglobin, hemoglobin, hemerythrin, and hemocyanin. Several transition metals form complexes with O2, and many of these complexes form reversibly. The binding of O2 is the first step in many important phenomena, such as cellular respiration, corrosion, and industrial chemistry. The first synthetic oxygen complex was demonstrated in 1938 with cobalt(II) complex reversibly bound O2.

<span class="mw-page-title-main">High-valent iron</span> Iron in an oxidation state higher than III

High-valent iron commonly denotes compounds and intermediates in which iron is found in a formal oxidation state > 3 that show a number of bonds > 6 with a coordination number ≤ 6. The term is rather uncommon for hepta-coordinate compounds of iron. It has to be distinguished from the terms hypervalent and hypercoordinate, as high-valent iron compounds neither necessarily violate the 18-electron rule nor necessarily show coordination numbers > 6. The ferrate(VI) ion [FeO4]2− was the first structure in this class synthesized. The synthetic compounds discussed below contain highly oxidized iron in general, as the concepts are closely related.

<span class="mw-page-title-main">Rothemund reaction</span>

The Rothemund reaction is a condensation/oxidation process that converts four pyrroles and four aldehydes into a porphyrin. It is based on work by Paul Rothemund, who first reported it in 1936. The method underpins more modern synthesis such as those described by Adler and Longo and by Lindsey. The Rothemund reactions is common in university teaching labs.

A transition metal oxo complex is a coordination complex containing an oxo ligand. Formally O2-, an oxo ligand can be bound to one or more metal centers, i.e. it can exist as a terminal or (most commonly) as bridging ligands (Fig. 1). Oxo ligands stabilize high oxidation states of a metal. They are also found in several metalloproteins, for example in molybdenum cofactors and in many iron-containing enzymes. One of the earliest synthetic compounds to incorporate an oxo ligand is potassium ferrate (K2FeO4), which was likely prepared by Georg E. Stahl in 1702.

<span class="mw-page-title-main">Metal salen complex</span> Coordination complex

A metal salen complex is a coordination compound between a metal cation and a ligand derived from N,N′-bis(salicylidene)ethylenediamine, commonly called salen. The classical example is salcomine, the complex with divalent cobalt Co2+, usually denoted as Co(salen). These complexes are widely investigated as catalysts and enzyme mimics.

In coordination chemistry, a macrocyclic ligand is a macrocyclic ring having at least nine atoms and three or more donor sites that serve as ligands that can bind to a central metal ion. Crown ethers and porphyrins are prominent examples. Macrocyclic ligands exhibit high affinity for metal ions.

<span class="mw-page-title-main">Water oxidation catalysis</span>

Water oxidation catalysis (WOC) is the acceleration (catalysis) of the conversion of water into oxygen and protons:

<span class="mw-page-title-main">Iron(tetraphenylporphyrinato) chloride</span> Chemical compound

Iron(tetraporphyriinato) chloride is the coordination complex with the formula Fe(TPP)Cl where TPP is the dianion [C44H28N4]2-. The compound forms blue microcrystals that dissolve in chlorinated solvent to give brown solutions. In terms of structure, the complex is five-coordinate with idealized C4v point group symmetry. It is one of more common transition metal porphyrin complexes.

<span class="mw-page-title-main">Transition metal carboxylate complex</span> Class of chemical compounds

Transition metal carboxylate complexes are coordination complexes with carboxylate (RCO2) ligands. Reflecting the diversity of carboxylic acids, the inventory of metal carboxylates is large. Many are useful commercially, and many have attracted intense scholarly scrutiny. Carboxylates exhibit a variety of coordination modes, most common are κ1- (O-monodentate), κ2 (O,O-bidentate), and bridging.

<span class="mw-page-title-main">Phosphorus porphyrin</span> Organophosphorus compound

Phosphorus-centered porphyrins are conjugated polycyclic ring systems consisting of either four pyrroles with inward-facing nitrogens and a phosphorus atom at their core or porphyrins with one of the four pyrroles substituted for a phosphole. Unmodified porphyrins are composed of pyrroles and linked by unsaturated hydrocarbon bridges often acting as multidentate ligands centered around a transition metal like Cu II, Zn II, Co II, Fe III. Being highly conjugated molecules with many accessible energy levels, porphyrins are used in biological systems to perform light-energy conversion and modified synthetically to perform similar functions as a photoswitch or catalytic electron carriers. Phosphorus III and V ions are much smaller than the typical metal centers and bestow distinct photochemical properties unto the porphyrin. Similar compounds with other pnictogen cores or different polycyclic rings coordinated to phosphorus result in other changes to the porphyrin’s chemistry.

References

  1. S. J. Lippard, J. M. Berg “Principles of Bioinorganic Chemistry” University Science Books: Mill Valley, CA; 1994. ISBN   0-935702-73-3.
  2. Miessler, Gary L.; Tarr, Donald Arthur (2004). Inorganic Chemistry. Pearson Education. ISBN   978-0-13-035471-6.
  3. Shriver, Duward; Atkins, Peter; Overton, T. L.; Rourke, J. P.; Weller, M. T.; Armstrong, F. A. (17 February 2006). Inorganic Chemistry. W. H. Freeman. ISBN   978-0-7167-4878-6.
  4. Scheidt, W. Robert; Geiger, David K. (1982). "Molecular stereochemistry of a low-spin five-coordinate iron(II) porphyrinate. (Thiocarbonyl)(octaethylporphinato)iron(II)". Inorganic Chemistry. 21 (3): 1208–1211. doi:10.1021/ic00133a065.
  5. Buchler, Johann W.; De Cian, André; Elschner, Steffen; Fischer, Jean; Hammerschmitt, Peter; Weiss, Raymond (1992). "Metal Complexes with Tetrapyrrole Ligands, LXI. Structure and Products of Electrochemical Oxidation of Zirconium(IV) and Hafnium(IV) Bisporphyrinate Double‐Deckers". Chemische Berichte. 125: 107–115. doi:10.1002/cber.19921250118.
  6. Senge, Mathias O.; MacGowan, Stuart A.; O'Brien, Jessica M. (2015). "Conformational control of cofactors in nature – the influence of protein-induced macrocycle distortion on the biological function of tetrapyrroles". Chemical Communications. 51 (96): 17031–17063. doi:10.1039/C5CC06254C. hdl: 2262/75305 . PMID   26482230.
  7. Walker, F. Ann; Simonis, Ursula (2011). "Iron Porphyrin Chemistry". Encyclopedia of Inorganic and Bioinorganic Chemistry. doi:10.1002/9781119951438.eibc0104. ISBN   9781119951438.
  8. Collman, James P.; Arnold, Hilary J. (1993). "Multiple Metal-Metal Bonds in 4d and 5d Metal-Porphyrin Dimers". Accounts of Chemical Research. 26 (11): 586–592. doi:10.1021/ar00035a004.
  9. Chang, C. K.; DiNello, R. K.; Dolphin, D. (2007). "Iron Porphines". Inorganic Syntheses. Vol. 20. pp. 147–155. doi:10.1002/9780470132517.ch35. ISBN   9780470132517.{{cite book}}: |journal= ignored (help)
  10. De Luca, Giovanna; Romeo, Andrea; Scolaro, Luigi Monsù; Ricciardi, Giampaolo; Rosa, Angela (2009). "Sitting-Atop Metallo-Porphyrin Complexes: Experimental and Theoretical Investigations on Such Elusive Species". Inorganic Chemistry. 48 (17): 8493–8507. doi:10.1021/ic9012153. PMID   19650629.
  11. Caughey, Winslow S.; Alben, James O.; Fujimoto, Wilfred Y.; York, J. Lyndal (1966). "Substituted Deuteroporphyrins. I. Reactions at the Periphery of the Porphyrin Ring1". The Journal of Organic Chemistry. 31 (8): 2631–2640. doi:10.1021/jo01346a042. PMID   5917451.
  12. Pereira, Mariette M.; Dias, Lucas D.; Calvete, Mário J. F. (2018). "Metalloporphyrins: Bioinspired Oxidation Catalysts". ACS Catalysis. 8 (11): 10784–10808. doi:10.1021/acscatal.8b01871. S2CID   106119734.
  13. Degennaro L, Trinchera P, Luisi R (August 2014). "Recent advances in the stereoselective synthesis of aziridines". Chemical Reviews. 114 (16): 7881–7929. doi:10.1021/cr400553c. PMID   24823261.
  14. Doyle MP (2009-01-19). "Exceptional selectivity in cyclopropanation reactions catalyzed by chiral cobalt(II)-porphyrin catalysts". Angewandte Chemie. 48 (5): 850–852. doi:10.1002/anie.200804940. PMC   3517106 . PMID   19117005.
  15. Huang X, Groves JT (March 2018). "Oxygen Activation and Radical Transformations in Heme Proteins and Metalloporphyrins". Chemical Reviews. 118 (5): 2491–2553. doi:10.1021/acs.chemrev.7b00373. PMC   5855008 . PMID   29286645.
  16. Kadish KM, Smith KM, Guilard R, eds. (2012). Handbook of porphyrin science with applications to chemistry, physics, materials science, engineering, biology and medicine. Singapore: World Scientific. ISBN   9789814335492.
  17. Zhang W, Lai W, Cao R (February 2017). "Energy-Related Small Molecule Activation Reactions: Oxygen Reduction and Hydrogen and Oxygen Evolution Reactions Catalyzed by Porphyrin- and Corrole-Based Systems". Chemical Reviews. 117 (4): 3717–3797. doi:10.1021/acs.chemrev.6b00299. PMID   28222601.
  18. Kang T, Kim YG, Kim D, Hyeon T (January 2020). "Inorganic nanoparticles with enzyme-mimetic activities for biomedical applications". Coordination Chemistry Reviews. 403: 213092. doi:10.1016/j.ccr.2019.213092. hdl: 10371/171769 . S2CID   209716259.
  19. Pham TA, Song F, Alberti MN, Nguyen MT, Trapp N, Thilgen C, et al. (October 2015). "Heat-induced formation of one-dimensional coordination polymers on Au(111): an STM study". Chemical Communications. 51 (77): 14473–14476. doi: 10.1039/C5CC04940G . hdl: 20.500.11850/104419 . PMID   26278062.
  20. 1 2 Anderson S, Anderson HL, Bashall A, McPartlin M, Sanders JK (1995). "Assembly and Crystal Structure of a Photoactive Array of Five Porphyrins". Angew. Chem. Int. Ed. Engl. 34 (10): 1096–1099. doi:10.1002/anie.199510961.
  21. Kohn E, Shirly D, Fry CH, Caputo GA (2022-06-14). "Peptide‐assisted supramolecular polymerization of the anionic porphyrin meso‐tetra ( 4‐sulfonatophenyl )porphine". Peptide Science. 114 (6). doi: 10.1002/pep2.24288 . ISSN   2475-8817. S2CID   249689192.