Transition metal chloride complex

Last updated
Octahedral molecular geometry is a common structural motif for homoleptic metal chloride complexes. Examples include MCl6 (M = Mo, W), [MCl6] (M = Nb, Ta, Mo, W, Re), [MCl6] (M = Ti Zr, Hf, Mo, Mn, Re, Ir, Pd, Pt), and [MCl6] (M = Ru Os, Rh, Ir). Tungsten-hexachloride-from-xtal-3D-balls.png
Octahedral molecular geometry is a common structural motif for homoleptic metal chloride complexes. Examples include MCl6 (M = Mo, W), [MCl6] (M = Nb, Ta, Mo, W, Re), [MCl6] (M = Ti Zr, Hf, Mo, Mn, Re, Ir, Pd, Pt), and [MCl6] (M = Ru Os, Rh, Ir).

In chemistry, a transition metal chloride complex is a coordination complex that consists of a transition metal coordinated to one or more chloride ligand. The class of complexes is extensive. [1]

Contents

Bonding

Halides are X-type ligands in coordination chemistry. They are both σ- and π-donors. Chloride is commonly found as both a terminal ligand and a bridging ligand. The halide ligands are weak field ligands. Due to a smaller crystal field splitting energy, the homoleptic halide complexes of the first transition series are all high spin. Only [CrCl6]3− is exchange inert.

Homoleptic metal halide complexes are known with several stoichiometries, but the main ones are the hexahalometallates and the tetrahalometallates. The hexahalides adopt octahedral coordination geometry, whereas the tetrahalides are usually tetrahedral. Square planar tetrahalides are known for Pd(II), Pt(II), and Au(III). Examples with 2- and 3-coordination are common for Au(I), Cu(I), and Ag(I).

Due to the presence of filled pπ orbitals, halide ligands on transition metals are able to reinforce π-backbonding onto a π-acid. They are also known to labilize cis-ligands. [2] [3]

Homoleptic complexes

Homoleptic complexes (complexes with only chloride ligands) are often common reagents. Almost all examples are anions.

1st row

1st Transition Series
Complexcolourelectron config.structuregeometrycomments
TiCl4 colourless(t2g)0 Tetrahedral-tetrachlorometallate-3D-bs-20.png tetrahedral
[Ti2Cl9]white/colourlessd0d0 Face-shared-bioctahedral-nonachlorodimetallate-3D-bs-20.png face-sharing bioctahedronTi-Cl(terminal) = 2.23 Å, 2.45 (terminal)
(N(PCl3)2)+ salt) [4]
[Ti2Cl9]3-orange(t2g)1(t2g)1 Face-shared-bioctahedral-nonachlorodimetallate-3D-bs-20.png face-sharing bioctahedronTi-Ti =3.22 Å
Ti-C1(terminal) = 2.32-2.35 Å,
Ti-Cl(bridge) = 2.42-2.55 Å
((NEt4+)3)3 salt) [5]
[Ti2Cl10]2−colourlessd0d0 Edge-shared-bioctahedral-decachlorodimetallate-3D-bs-20.png bioctahedral
[Ti3Cl12]3-green(t2g)1(t2g)1(t2g)1 Face-shared-trioctahedral-dodecachlorotrimetallate-3D-bs-20.png face-sharing trioctahedronTi-Ti = 3.19, 3.10 Å (terminal)
Ti-C1(terminal) = 2.36 Å (terminal),
Ti-Cl(bridge) = 2.50 Å
((PPh4+)3)3 salt) [6]
[TiCl6]2−yellowd0 Octahedral-hexachlorometallate-3D-bs-20.png octahedralPPh4+ salt
Ti-Cl = 2.33 Å [7]
VCl4 red(t2g)1 Tetrahedral-tetrachlorometallate-3D-bs-20.png tetrahedralV1−Cl = 2.29 Å
V2Cl10 violet(t2g)0 Edge-shared-bioctahedral-decachlorodimetallate-3D-bs-20.png edge-shared bioctahedronV1−Cl(bridging) = 2.48 Å
V1−Cl(terminal) = 2.16-2.21 Å [8]
[VCl6]2-red(t2g)1 Octahedral-hexachlorometallate-3D-bs-20.png octahedralV1−Cl = 2.29 Å [9]
[CrCl6]3−pink [3] (t2g)3 Octahedral-hexachlorometallate-3D-bs-20.png octahedral [10] [3]
[Cr2Cl9]3−red(d3)2 Face-shared-bioctahedral-nonachlorodimetallate-3D-bs-20.png face-sharing bioctahedronCr-Cl(terminal) = 2.31 Å, 2.42 (terminal)
(Et2NH2+ salt) [11]
[MnCl4]2− [12] pale pink to while(eg)2(t2g)3 Tetrahedral-tetrachlorometallate-3D-bs-20.png tetrahedralMn-Cl bond length = 2.3731-2.3830 Å [13]
[MnCl6]2−dark red(t2g)3(eg)1 Octahedral-hexachlorometallate-3D-bs-20.png octahedralMn-Cl distance = 2.28 Å
K+ salt [14] )
salt is isostructural with K2PtCl6
[MnCl6]3−brown [3] (t2g)3(eg)1 Octahedral-hexachlorometallate-3D-bs-20.png octahedral [10] [3]
[Mn2Cl6]2−yellow-green(eg)2(t2g)3 Bitetrahedral-hexachlorometallate-3D-bs-20.png bitetrahedralMn-Cl(terminal) bond length = 2.24 Å
Mn-Cl(terminal) bond length = 2.39 Å [15]
(PPN+)2 salt
[Mn3Cl12]6−pink(t2g)3(eg)2 Face-shared-trioctahedral-dodecachlorotrimetallate-3D-bs-20.png cofacial trioctahedronMn-Cl distance = --- Å
[(C(NH2)3]+ 6 salt [16]
[FeCl4]2− [12] cream(eg)3(t2g)3 Tetrahedral-tetrachlorometallate-3D-bs-20.png tetrahedral((Et4N+)2 salt) [12]
[FeCl4] (eg)2(t2g)3 Tetrahedral-tetrachlorometallate-3D-bs-20.png tetrahedralFe-Cl bond length = 2.19 Å [17]
[FeCl6]3−orange(t2g)3(eg)2 Octahedral-hexachlorometallate-3D-bs-20.png octahedral [3]
[Fe2Cl6]2−pale yellow(eg)2(t2g)3 Bitetrahedral-hexachlorometallate-3D-bs-20.png bitetrahedralFe-Cl(terminal) bond length = 2.24 Å
Fe-Cl(terminal) bond length = 2.39 Å [15]
(PPN+)2 salt
[CoCl4]2− [12] blue [12] (eg)4(t2g)3 Tetrahedral-tetrachlorometallate-3D-bs-20.png tetrahedral
[Co2Cl6]2−blue [15] (eg)4(t2g)3 Bitetrahedral-hexachlorometallate-3D-bs-20.png bitetrahedralMn-Cl(terminal) bond length = 2.24 Å
Co-Cl(terminal) bond length = 2.35 Å [15]
(PPN+)2 salt
[NiCl4]2− [12] blue [12] (eg)4(t2g)4 Tetrahedral-tetrachlorometallate-3D-bs-20.png tetrahedralNi-Cl bond length = 2.28 Å
(Et4N+)2 salt [18]
[Ni3Cl12]6−orange [19] (t2g)6(eg)2 Face-shared-trioctahedral-dodecachlorotrimetallate-3D-bs-20.png confacial trioctahedral((Me2NH2+)2)8 salt
double salt with two Cl
Ni-Cl bond length = 2.36-2.38 Å [19]
[CuCl4]2− [12] orange [20]
yellow (flattened tetrahedral) [21]
green (square planar) [22]
(t2g)6(eg)3 Flattened-tetrahedral-tetrachlorometallate-3D-bs-20.png flattened tetrahedral
or square planar [23] [24]
Cu-Cl bond length = 2.24 Å
[Cu2Cl6]2−red[(t2g)6(eg)3]2 Edge-shared-bis-square-planar-hexachlorodimetallate-3D-bs-20.png edge-shared bis(square planar) [25] Cu-Cl(terminal) = 2.24 Å
Cu-Cl(bridging) = 2.31 Å
[ZnCl4]2−white/colorlessd10 Tetrahedral-tetrachlorometallate-3D-bs-20.png tetrahedral

2nd row

Some homoleptic complexes of the second row transition metals feature metal-metal bonds.

2nd Transition Series
Complexcolourelectron config.structuregeometrycomments
[ZrCl6]2−yellowd0 Octahedral-hexachlorometallate-3D-bs-20.png octahedralZr-Cl distance = 2.460 Å
(Me4N+)2 salt [27]
[Zr2Cl10]2−colorless(d0)2 Edge-shared-bioctahedral-decachlorodimetallate-3D-bs-20.png edge-shared bioctahedralZr-Cl = 2.36 Å (terminal), 2.43 Å (bridging)
N(PCl3)2)+ salt [4]
Nb2Cl10 yellow(d0)2 Edge-shared-bioctahedral-decachlorodimetallate-3D-bs-20.png edge-shared bioctahedral [Nb2Cl10]3.99 Å [28]
[NbCl6]yellowd0 Octahedral-hexachlorometallate-3D-bs-20.png octahedralNb-Cl = 2.34 Å
N(PCl3)2)+ salt [4]
[Nb6Cl18]2−black(d2)4(d3)2 (14 cluster electrons) Octahedral-octadecachlorohexametallate-3D-bs-20.png cluster Nb---Nb bondingNb-Cl = 2.92 Å
(K+)2 salt [29]
MoCl6 blackd0 Octahedral-hexachlorometallate-3D-bs-20.png octahedronMo−Cl = 2.28 -2.31 Å [8]
[MoCl6]2−yellow(t2g)2 Octahedral-hexachlorometallate-3D-bs-20.png octahedronMo−Cl = 2.37, 2.38, 2.27 Å [30]
[MoCl6]3−pink(t2g)3 Octahedral-hexachlorometallate-3D-bs-20.png octahedral
[Mo2Cl8]4− purple [31] 2(d4) Octachlorodimetallate-view-2-3D-bs-20.png Mo-Mo quadruple bond
[Mo2Cl9]3−2(d3) Face-shared-bioctahedral-nonachlorodimetallate-3D-bs-20.png face-shared bioctahedralMo-Mo (triple) bond length = 2.65 Å
Mo-Cl (terminal) bond length = 2.38 Å
Mo-Cl (bridging) bond length = 2.49 Å [32] [33]
Mo2Cl10 green(d1)2 Edge-shared-bioctahedral-decachlorodimetallate-3D-bs-20.png edge-sharing bioctahedra [34]
[Mo2Cl10]2−(d2)2 Edge-shared-bioctahedral-decachlorodimetallate-3D-bs-20.png edge-sharing bioctahedra [35]
[Mo5Cl13]2−brown [31] d2d2d2d2d3 Tridecachloropentametallate-3D-bs-20.png incomplete octahedron [36]
[Mo6Cl14]2− yellowd4 Tetradecachlorohexametallate-3D-bs-20.png octahedral cluster(4-HOPyH+)2 salt [37]
[TcCl6]2−yellow(t2g)3 Octahedral-hexachlorometallate-3D-bs-20.png octahedronTc-Cl = 2.35 Å for As(C6H5)4+ salt [38]
[Tc2Cl8]2−green(t2g)4 Octachlorodimetallate-view-2-3D-bs-20.png Tc-Tc quadruple bondTc-Tc = 2.16, Tc-Cl = 2.34 Å for NBu4+ salt [39]
[RuCl6]2−brown(t2g)4 Octahedral-hexachlorometallate-3D-bs-20.png octahedral(EtPPh3+)2 salt [40]
[Ru2Cl9]3−red[(t2g)5]2 Face-shared-bioctahedral-nonachlorodimetallate-3D-bs-20.png cofacial bioctahedralRu-Ru bond length = 2.71 Å; Ru-Cl(terminal) = 2.35 Å, Ru-Cl(bridging) = 2.36 Å ((Et4N)+)3 salt [41]
[Ru3Cl12]4−green(d5)2(d6) Face-shared-trioctahedral-dodecachlorotrimetallate-3D-bs-20.png cofacial trioctahedralRu-Ru bond lengths = 2.86 Å
Ru-Cl bond lengths = 2.37-2.39 Å
(Et4N+)2(H7O3+)2 salt [42]
[RhCl6]3−red(t2g)6 Octahedral-hexachlorometallate-3D-bs-20.png octahedralH2N+(CH2CH2NH3+)2 salt) [43]
[Rh2Cl9]3−red-brown(t2g)6 Face-shared-bioctahedral-nonachlorodimetallate-3D-bs-20.png octahedralRh-Cl(terminal) = 2.30 Å, Rh-Cl(terminal) = 2.40 Å
((Me3CH2Ph)+)3 salt) [32]
[PdCl4]2−brownd8 Square-planar-tetrachlorometallate-view-3-3D-bs-20.png square planar
[Pd2Cl6]2− [44] red ((Et4N+)2 salt)d8 Edge-shared-bis-square-planar-hexachlorodimetallate-3D-bs-20.png square planar
[Pd3Cl8]2− [45] orange brown ((Bu4N+)2 salt)d8 Octachlorotrimetallate-3D-bs-20.png square planar
[PdCl6]2−brownd6 Octahedral-hexachlorometallate-3D-bs-20.png octahedralPd(IV)
[Pd6Cl12]yellow-brownd8 Dodecachlorohexametallate-3D-bs-20.png square planar [46]
[AgCl2]white/colorlessd10 Linear-dichlorometallate-3D-bs-20.png linearsalt of [K(2.2.2-crypt)]+ [47]
[CdCl4]2−white/colorlessd10 Tetrahedral-tetrachlorometallate-3D-bs-20.png tetrahedralEt4N+ salt, Cd-Cl distance is 2.43 Å [26]
[Cd2Cl6]2−white/colorlessd10 Bitetrahedral-hexachlorometallate-3D-bs-20.png edge-shared bitetrahedron(C6N3(4-C5H4N)33+ salt [48]
[Cd3Cl12]6−white/colorlessd10 Face-shared-trioctahedral-dodecachlorotrimetallate-3D-bs-20.png octahedral (central Cd)
pentacoordinate (terminal Cd's)
cofactial trioctahedral
(C6N3(4-C5H4N)33+ salt [48]
(3,8-Diammonium-6-phenylphenanthridine3+)2 [49]
[Cd6Cl19]7−white/colorlessd10 Octahedral-nonadecachlorohexametallate-3D-bs-20.png octahedron of octahedra4,4'-(C6H3(2-Et)NH3+)2 salt [50]

3rd row

3rd Transition Series
Complexcolourelectron config.structuregeometrycomments
[HfCl6]2−whited0 Octahedral-hexachlorometallate-3D-bs-20.png octahedralHf-Cl distance = 2.448 A
((Me4N+)2 salt) [27]
[Hf2Cl10]2−colorless/whited0 Edge-shared-bioctahedral-decachlorodimetallate-3D-bs-20.png edge-shared bioctahedral [51]
[Hf2Cl9]colorless/white(d0)2 Face-shared-bioctahedral-nonachlorodimetallate-3D-bs-20.png face-shared bioctahedral [52]
[TaCl5]whited0 Edge-shared-bioctahedral-decachlorodimetallate-3D-bs-20.png edge-shared bioctahedral
[TaCl6]white/colourlessd0 Octahedral-hexachlorometallate-3D-bs-20.png octahedralTa-Cl = 2.34 Å
(N(PCl3)2)+ salt) [4]
[Ta6Cl18]2-greend0 Octahedral-hexachlorometallate-3D-bs-20.png octahedralTa-Ta = 2.34 Å
(H+2 salt hexahydrate [53]
WCl6 blued0 Octahedral-hexachlorometallate-3D-bs-20.png octahedral2.24–2.26 Å [54]
[WCl6]2−(t2g)2 Octahedral-hexachlorometallate-3D-bs-20.png octahedralW-Cl distances range from 2.34 to 2.37 Å
(PPh4+ salt) [55]
[WCl6](t2g)1 Octahedral-hexachlorometallate-3D-bs-20.png octahedralW-Cl distance = 2.32 Å
(Et4N+ salt) [56]
W2Cl10 black [57] (t2g1)2 Edge-shared-bioctahedral-decachlorodimetallate-3D-bs-20.png bioctahedralW-W distance = 3.814 Å [58]
[W2Cl8]4−blue2(d4) Octachlorodimetallate-view-2-3D-bs-20.png W-W quadruple bonddW-W = 2.259 Å [Na(tmeda)+]4 salt [59]
[W2Cl9]2−d3d2 Face-shared-bioctahedral-nonachlorodimetallate-3D-bs-20.png face-sharing bioctahedralW-W distance = 2.54 Å
W-Cl(terminal) = 2.36 Å, W-Cl(bridge) = 2.45 Å
((PPN+)2 salt) [60]
[W2Cl9]3−d3d3 Face-shared-bioctahedral-nonachlorodimetallate-3D-bs-20.png octahedralW-Cl distance = 2.32 Å
(Et4N+ salt) [60]
[W3Cl13]3−d3,d3,d4 Tridecachlorotrimetallate-3D-bs-20.png [W33-Cl)(μ-Cl)3Cl9]3-W-W distances = 2.84 Å [61]
[W3Cl13]2−d3,d4,d4 Tridecachlorotrimetallate-3D-bs-20.png [W33-Cl)(μ-Cl)3Cl9]2- [61] W-W distances = 2.78 Å [61]
[W6Cl14]2-yellow [62] (d4)6 Tetradecachlorohexametallate-3D-bs-20.png see Mo6Cl12
[ReCl6]red-brown(t2g)2 Octahedral-hexachlorometallate-3D-bs-20.png octahedralRe-Cl distance = 2.24-2.31 Å
(PPh4+ salt) [63]
[ReCl6](t2g)1 Octahedral-hexachlorometallate-3D-bs-20.png octahedralRe-Cl distance = 226.3(6) Å [8]
[ReCl6]2−green(t2g)3 Octahedral-hexachlorometallate-3D-bs-20.png octahedralRe-Cl distance = 2.35-2.38 Å
((PPN+)2 salt) [64]
[Re2Cl9]2−(t2g)3(t2g)4 Face-shared-bioctahedral-nonachlorodimetallate-3D-bs-20.png face-sharing bioctahedralRe-Re distance = 2.48 Å
Re-Cl distances = 2.42 Å (bridge), 2.33 Å (terminal)
((Et4N+)2 salt) [65]
[Re2Cl9]((t2g)3)2 Face-shared-bioctahedral-nonachlorodimetallate-3D-bs-20.png face-sharing bioctahedralRe-Re distance = 2.70 Å
Re-Cl distances = 2.41 (bridge), 2.28 Å (terminal)
(Bu4N+ salt) [65]
[OsCl6]dark green(t2g)3 Octahedral-hexachlorometallate-3D-bs-20.png octahedraldOs-Cl = 2.30 Å for Et4N+ [66] and Ph4P+ [67] salts
[OsCl6]2−yellow-orange(t2g)4 Octahedral-hexachlorometallate-3D-bs-20.png octahedral [67] Os-Cl distance 2.33 Å
[Os2Cl8]2−green(d5)2 Square-antiprismatic-octachlorodimetallate-view-2-3D-bs-20.png square antiprismdOs-Os = 2.182 Å, dOs-Cl = 2.32 Å (Bu4N+)2 salt [68]
[Os2Cl10]2−green(d4)2 Edge-shared-bioctahedral-decachlorodimetallate-3D-bs-20.png octahedraldOs-Cl(terminal) = 2.30 Å dOs-Cl(bridging) = 2.42 Å (Et4N+)2 salt [66]
[IrCl6]3−red(t2g)6 Octahedral-hexachlorometallate-3D-bs-20.png octahedralIr-Cl = 2.36 Å [69]
[IrCl6]2−brown(t2g)5 Octahedral-hexachlorometallate-3D-bs-20.png octahedralIr-Cl = 2.33 Å [70]
[Ir2Cl9]3−-((t2g)6)2 Face-shared-bioctahedral-nonachlorodimetallate-3D-bs-20.png bi-octahedral [71]
[PtCl4]2−pinkd8 Square-planar-tetrachlorometallate-view-3-3D-bs-20.png square planar
[PtCl6]2−yellowd6 Octahedral-hexachlorometallate-3D-bs-20.png octahedralPt-Cl distance = 2.32 Å
Et4N+ salt, ((Me4N+)2 salt) [27]
[Pt2Cl9]red (Bu4N+ salt)((t2g)6)2 Face-shared-bioctahedral-nonachlorodimetallate-3D-bs-20.png octahedralPt-Clt and Pt-Clbridge = 2.25, 2.38 Å [72]
[Pt2Cl10]2−yellow-brown (PPN+ salt)((t2g)6)2 Edge-shared-bioctahedral-decachlorodimetallate-3D-bs-20.png edge-shared bioctahedralPt-Clt and Pt-Clbridge = 2.27, 2.37 Å [72]
[Pt6Cl12]yellow-brown(d8)6 Dodecachlorohexametallate-3D-bs-20.png square planarPt-Cl = 2.31 [73]
[AuCl2]white/colorlessd10 Linear-dichlorometallate-3D-bs-20.png linearAu-Cl distances of 2.28 Å
NEt4+ salt [74]
Au4Cl8 black(d10)2(d8)2 Au4Cl8-structure-based-on-xtal-3D-bs-20.png linear and square planarrare example of mixed valence, molecular chloride [75]
[AuCl4]yellowd8 Square-planar-tetrachlorometallate-view-3-3D-bs-20.png square planarAu-Cl distances of 2.26 Å
NBu4+ salt [76]
[HgCl4]2−white/colorlessd10 Tetrahedral-tetrachlorometallate-3D-bs-20.png tetrahedralHg-Cl distance is 2.46 Å [26]
Et4N+ salt
[Hg2Cl6]2−white/colorlessd10 Bitetrahedral-hexachlorometallate-3D-bs-20.png edge-shared bitetrahedralHg-Cl distance is 2.46 Å [77]
Bu4N+ salt

Heteroleptic complexes

Heteroleptic complexes containing chloride are numerous. Most hydrated metal halides are members of this class. Hexamminecobalt(III) chloride and Cisplatin (cis-Pt(NH3)2Cl2) are prominent examples of metal-ammine-chlorides.

Hydrates

"Nickel dichloride hexahydrate" consists of the chloride complex trans-[NiCl2(H2O)4 plus water of crystallization. MCl2(aq)6forFeCoNi.png
"Nickel dichloride hexahydrate" consists of the chloride complex trans-[NiCl2(H2O)4 plus water of crystallization.

As indicated in the table below, many hydrates of metal chlorides are molecular complexes. [78] [79] These compounds are often important commercial sources of transition metal chlorides. Several hydrated metal chlorides are not molecular and thus are not included in this tabulation. For example the dihydrates of manganese(II) chloride, nickel(II) chloride, copper(II) chloride, iron(II) chloride, and cobalt(II) chloride are coordination polymers.

Formula of
hydrated metal halides
Coordination
sphere of the metal
TiCl3(H2O)6 trans-[TiCl2(H2O)4]+ [80]
VCl3(H2O)6 trans-[VCl2(H2O)4]+ [80]
CrCl3(H2O)6 trans-[CrCl2(H2O)4]+
CrCl3(H2O)6 [CrCl(H2O)5]2+
CrCl2(H2O)4 trans-[CrCl2(H2O)4]
CrCl3(H2O)6 [Cr(H2O)6]3+ [81]
MnCl2(H2O)6 trans-[MnCl2(H2O)4]
MnCl2(H2O)4 cis-[MnCl2(H2O)4] [82]
FeCl2(H2O)6 trans-[FeCl2(H2O)4]
FeCl2(H2O)4 trans-[FeCl2(H2O)4]
FeCl3(H2O)6 one of four hydrates of ferric chloride, [83]
FeCl3(H2O)2.5 cis-[FeCl2(H2O)4]+ [84]
CoCl2(H2O)6 trans-[CoCl2(H2O)4]
CoCl2(H2O)4 cis-[CoCl2(H2O)4]
NiCl2(H2O)6 trans-[NiCl2(H2O)4]
NiCl2(H2O)4 cis-[NiCl2(H2O)4]

Adducts

Metal chlorides form adducts with ethers to give transition metal ether complexes.

Related Research Articles

Cuprates are a class of compounds that contain copper (Cu) atom(s) in an anion. They can be broadly categorized into two main types:

In chemistry, water(s) of crystallization or water(s) of hydration are water molecules that are present inside crystals. Water is often incorporated in the formation of crystals from aqueous solutions. In some contexts, water of crystallization is the total mass of water in a substance at a given temperature and is mostly present in a definite (stoichiometric) ratio. Classically, "water of crystallization" refers to water that is found in the crystalline framework of a metal complex or a salt, which is not directly bonded to the metal cation.

<span class="mw-page-title-main">Tellurate</span> Compound containing an oxyanion of tellurium

In chemistry tellurate is a compound containing an oxyanion of tellurium where tellurium has an oxidation number of +6. In the naming of inorganic compounds it is a suffix that indicates a polyatomic anion with a central tellurium atom.

<span class="mw-page-title-main">Scandium chloride</span> Chemical compound

Scandium(III) chloride is the inorganic compound with the formula ScCl3. It is a white, high-melting ionic compound, which is deliquescent and highly water-soluble. This salt is mainly of interest in the research laboratory. Both the anhydrous form and hexahydrate (ScCl3•6H2O) are commercially available.

Titanium(III) chloride is the inorganic compound with the formula TiCl3. At least four distinct species have this formula; additionally hydrated derivatives are known. TiCl3 is one of the most common halides of titanium and is an important catalyst for the manufacture of polyolefins.

<span class="mw-page-title-main">Titanium(II) chloride</span> Chemical compound

Titanium(II) chloride is the chemical compound with the formula TiCl2. The black solid has been studied only moderately, probably because of its high reactivity. Ti(II) is a strong reducing agent: it has a high affinity for oxygen and reacts irreversibly with water to produce H2. The usual preparation is the thermal disproportionation of TiCl3 at 500 °C. The reaction is driven by the loss of volatile TiCl4:

There are three sets of Indium halides, the trihalides, the monohalides, and several intermediate halides. In the monohalides the oxidation state of indium is +1 and their proper names are indium(I) fluoride, indium(I) chloride, indium(I) bromide and indium(I) iodide.

<span class="mw-page-title-main">Rhenium pentachloride</span> Chemical compound

Rhenium pentachloride is an inorganic compound of chlorine and rhenium. The compound has the formula Re2Cl10 but it is usually referred to as rhenium pentachloride. It is a red-brown solid.

<span class="mw-page-title-main">Monofluorophosphate</span> Chemical compound

Monofluorophosphate is an anion with the formula PO3F2−, which is a phosphate group with one oxygen atom substituted with a fluoride atom. The charge of the ion is −2. The ion resembles sulfate in size, shape and charge, and can thus form compounds with the same structure as sulfates. These include Tutton's salts and langbeinites. The most well-known compound of monofluorophosphate is sodium monofluorophosphate, commonly used in toothpaste.

<span class="mw-page-title-main">Difluorophosphate</span> Chemical compound

Difluorophosphate or difluorodioxophosphate or phosphorodifluoridate is an anion with formula PO2F−2. It has a single negative charge and resembles perchlorate and monofluorosulfonate in shape and compounds. These ions are isoelectronic, along with tetrafluoroaluminate, phosphate, orthosilicate, and sulfate. It forms a series of compounds. The ion is toxic to mammals as it causes blockage to iodine uptake in the thyroid. However it is degraded in the body over several hours.

The telluride iodides are chemical compounds that contain both telluride ions (Te2−) and iodide ions (I). They are in the class of mixed anion compounds or chalcogenide halides.

Sulfidostannates, or thiostannates are chemical compounds containing anions composed of tin linked with sulfur. They can be considered as stannates with sulfur substituting for oxygen. Related compounds include the thiosilicates, and thiogermanates, and by varying the chalcogen: selenostannates, and tellurostannates. Oxothiostannates have oxygen in addition to sulfur. Thiostannates can be classed as chalcogenidometalates, thiometallates, chalcogenidotetrelates, thiotetrelates, and chalcogenidostannates. Tin is almost always in the +4 oxidation state in thiostannates, although a couple of mixed sulfides in the +2 state are known,

A chloride nitride is a mixed anion compound containing both chloride (Cl) and nitride ions (N3−). Another name is metallochloronitrides. They are a subclass of halide nitrides or pnictide halides.

A Phosphide chloride is a mixed anion compound containing both phosphide (P3−) and chloride (Cl) ions.

Arsenide bromides or bromide arsenides are compounds containing anions composed of bromide (Br) and arsenide (As3−). They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the arsenide chlorides, arsenide iodides, phosphide bromides, and antimonide bromides.

Arsenide chlorides or chloride arsenides are compounds containing anions composed of chloride (Cl) and arsenide (As3−). They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the arsenide bromides, arsenide iodides, phosphide chlorides, and antimonide chlorides.

An iodide nitride is a mixed anion compound containing both iodide (I) and nitride ions (N3−). Another name is metalloiodonitrides. They are a subclass of halide nitrides or pnictide halides. Some different kinds include ionic alkali or alkaline earth salts, small clusters where metal atoms surround a nitrogen atom, layered group 4 element 2-dimensional structures, and transition metal nitrido complexes counter-balanced with iodide ions. There is also a family with rare earth elements and nitrogen and sulfur in a cluster.

Carbide chlorides are mixed anion compounds containing chloride anions and anions consisting entirely of carbon. In these compounds there is no bond between chlorine and carbon. But there is a bond between a metal and carbon. Many of these compounds are cluster compounds, in which metal atoms encase a carbon core, with chlorine atoms surrounding the cluster. The chlorine may be shared between clusters to form polymers or layers. Most carbide chloride compounds contain rare earth elements. Some are known from group 4 elements. The hexatungsten carbon cluster can be oxidised and reduced, and so have different numbers of chlorine atoms included.

<span class="mw-page-title-main">Transition metal ether complex</span>

In chemistry, a transition metal ether complex is a coordination complex consisting of a transition metal bonded to one or more ether ligand. The inventory of complexes is extensive. Common ether ligands are diethyl ether and tetrahydrofuran. Common chelating ether ligands include the glymes, dimethoxyethane (dme) and diglyme, and the crown ethers. Being lipophilic, metal-ether complexes often exhibit solubility in organic solvents, a property of interest in synthetic chemistry. In contrast, the di-ether 1,4-dioxane is generally a bridging ligand.

Indium(I) chloride is the chemical compound with the formula InCl. Indium monochloride occurs as a yellow cubic form below 120 °C and above this temperature as a red orthorhombic form. InCl is one of three known indium chlorides.

References

  1. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN   978-0-08-037941-8.
  2. J. F. Hartwig (2009). "4: Covalent (X-Type) Ligands Bound Through Metal-Heteroatom Bonds". Organotransition Metal Chemistry. University Science Books. ISBN   978-1-891389-53-5.
  3. 1 2 3 4 5 6 Hatfield, William E.; Fay, Robert C.; Pfluger, C. E.; Piper, T. S. (1963). "Hexachlorometallates of Trivalent Chromium, Manganese and Iron". Journal of the American Chemical Society. 85 (3): 265–269. doi:10.1021/ja00886a003.
  4. 1 2 3 4 Rivard, Eric; McWilliams, Andrew R.; Lough, Alan J.; Manners, Ian (2002). "Bis(trichlorophosphine)iminium salts, [Cl3P=N=PCl3]+, with transition metal halide counter-ions". Acta Crystallographica Section C. 58 (9): i114–i118. doi: 10.1107/S0108270102012532 . PMID   12205363.
  5. Castro, Stephanie L.; Streib, William E.; Huffmann, John C.; Christou, George (1996). "A mixed-valence (TiIIITiIV) Carboxylate Complex: Crystal Structures and Properties of [Ti2OCl3(O2CPh)2(THF)3] and [NEt4]3[Ti2Cl9]". Chemical Communications (18): 2177. doi:10.1039/CC9960002177.
  6. Chen, Linfeng; Cotton, F. Albert (1998). "Synthesis, Reactivity, and X-ray Structures of Face-Sharing Ti(III) Complexes; the New Trinuclear Ion, [Ti3Cl12]3−". Polyhedron. 17 (21): 3727–3734. doi:10.1016/S0277-5387(98)00171-5.
  7. Chen, Linfeng; Cotton, F. A. (1998). "Partial Hydrolysis of Ti(III) and Ti(IV) Chlorides in the Presence of [PPh4]Cl". Inorganica Chimica Acta. 267 (2): 271–279. doi:10.1016/S0020-1693(97)05766-6.
  8. 1 2 3 Tamadon, Farhad; Seppelt, K. (2012). "The Elusive Halides VCl5, MoCl6, and ReCl6". Angewandte Chemie International Edition. 52 (2): 767–769. doi:10.1002/anie.201207552. PMID   23172658.
  9. Hayton, Trevor W.; Patrick, Brian O.; Legzdins, Peter (2004). "New Details Concerning the Reactions of Nitric Oxide with Vanadium Tetrachloride". Inorganic Chemistry. 43 (22): 7227–7233. doi:10.1021/ic0491534. PMID   15500362.
  10. 1 2 O. S. Filipenko, D. D. Makitova, O. N. Krasochka, V. I. Ponomarev, L. O. Atovmyan (1987). Koord. Khim. 13: 669.{{cite journal}}: Missing or empty |title= (help)CS1 maint: multiple names: authors list (link)
  11. Dyer, Philip W.; Gibson, Vernon C.; Jeffery, John C. (1995). "Unexpected Synthesis of a Binuclear Chromium(III) salt Exhibiting NHCl Hydrogen-Bonding Interactions". Polyhedron. 14 (20–21): 3095–3098. doi:10.1016/0277-5387(95)00089-B.
  12. 1 2 3 4 5 6 7 8 Gill, N. S.; Taylor, F. B. (1967). Tetrahalo Complexes of Dipositive Metals in the First Transition Series. Inorganic Syntheses. Vol. 9. pp. 136–142. doi:10.1002/9780470132401.ch37. ISBN   978-0-470-13240-1.
  13. Chang, Jui-Cheng; Ho, Wen-Yueh; Sun, I-Wen; Chou, Yu-Kai; Hsieh, Hsin-Hsiu; Wu, Tzi-Yi (2011). "Synthesis and Properties of New Tetrachlorocobaltate (II) and Tetrachloromanganate (II) Anion Salts with Dicationic Counterions". Polyhedron. 30 (3): 497–507. doi:10.1016/j.poly.2010.11.009.
  14. Moews, P. C. (1966). "The Crystal Structure, Visible, and Ultraviolet Spectra of Potassium Hexachloromanganate(IV)". Inorganic Chemistry. 5: 5–8. doi:10.1021/ic50035a002.
  15. 1 2 3 4 Sun, Jui-Sui; Zhao, Hanhua; Ouyang, Xiang; Clérac, Rodolphe; Smith, Jennifer A.; Clemente-Juan, Juan M.; Gómez-Garcia, Carlos; Coronado, Eugenio; Dunbar, Kim R. (1999). "Structures, Magnetic Properties, and Reactivity Studies of Salts Containing the Dinuclear Anion [M2Cl6]2-(M = Mn, Fe, Co)". Inorganic Chemistry. 38 (25): 5841–5855. doi:10.1021/ic990525w.
  16. Sen, Abhijit; Swain, Diptikanta; Guru Row, Tayur N.; Sundaresan, A. (2019). "Unprecedented 30 K Hysteresis Across Switchable Dielectric and Magnetic Properties in a Bright Luminescent Organic–Inorganic Halide (CH6N3)2MnCl4" (PDF). Journal of Materials Chemistry C. 7 (16): 4838–4845. doi:10.1039/C9TC00663J. S2CID   141394650.
  17. Lutz, Martin; Huang, Yuxing; Moret, Marc-Etienne; Klein Gebbink, Robertus J. M. (2014). "Phase Transitions and Twinned Low-Temperature Structures of Tetraethylammonium Tetrachloridoferrate(III)". Acta Crystallographica Section C. 70 (5): 470–476. doi:10.1107/S2053229614007955. hdl: 1874/307900 . PMID   24816016.
  18. Stucky, G. D.; Folkers, J. B.; Kistenmacher, T. J. (1967). "The Crystal and Molecular Structure of Tetraethylammonium Tetrachloronickelate(II)". Acta Crystallographica. 23 (6): 1064–1070. doi:10.1107/S0365110X67004268.
  19. 1 2 Gerdes, Allison; Bond, Marcus R. (2009). "Octakis(dimethylammonium) Hexa-μ2-chlorido-Hexachloridotrinickelate(II) Dichloride: A Linear Trinickel Complex with Asymmetric Bridging". Acta Crystallographica Section C. 65 (10): m398–m400. doi:10.1107/S0108270109036853. PMID   19805875.
  20. Mahoui, A.; Lapasset, J.; Moret, J.; Saint Grégoire, P. (1996). "Tetraethylammonium Tetramethylammonium Tetrachlorocuprate(II), [(C2H5)4N] [(CH3)4N] [CuCl4]". Acta Crystallographica Section C. 52 (11): 2674–2676. doi:10.1107/S0108270196009031.
  21. Guillermo Mínguez Espallargas; Lee Brammer; Jacco van de Streek; Kenneth Shankland; Alastair J. Florence; Harry Adams (2006). "Reversible Extrusion and Uptake of HCl Molecules by Crystalline Solids Involving Coordination Bond Cleavage and Formation". J. Am. Chem. Soc. 128 (30): 9584–9585. doi:10.1021/ja0625733. PMID   16866484.
  22. Kelley, A.; Nalla, S.; Bond, M. R. (2015). "The Square-Planar to Flattened-Tetrahedral CuX42- (X = Cl, Br) Structural Phase Transition in 1,2,6-Trimethylpyridinium salts". Acta Crystallographica Section B . 71 (Pt 1): 48–60. doi:10.1107/S205252061402664X. PMID   25643715.
  23. Halcrow, Malcolm A. (2013). "Jahn–Teller Distortions in Transition Metal Compounds, and Their Importance in Functional Molecular and Inorganic Materials" (PDF). Chemical Society Reviews . 42 (4): 1784–1795. doi:10.1039/C2CS35253B. PMID   22968285.
  24. Reinen, Dirk (2014). "A New Approach to Treating Vibronic Coupling Under Stress—The Strain-Induced Enhancement or Suppression of Jahn–Teller Distortions in Tetrahedral CuIICl4-Complexes, and the Transition to Octahedral Structures". Coordination Chemistry Reviews. 272: 30–47. doi:10.1016/j.ccr.2014.03.004.
  25. Willett, Roger D.; Butcher, Robert E.; Landee, Christopher P.; Twamley, Brendan (2006). "Two Halide Exchange in Copper(II) Halide Dimers: (4,4′-Bipyridinium)Cu2Cl6−xBRX". Polyhedron. 25 (10): 2093–2100. doi:10.1016/j.poly.2006.01.005.
  26. 1 2 Mahoui, A.; Lapasset, J.; Moret, J.; Saint Grégoire, P. (1996). "Bis(tetraethylammonium) Tetrachlorometallates, [(C2H5)4N]2[MCl4], where M = Hg, Cd, Zn". Acta Crystallographica Section C. 52 (11): 2671–2674. doi:10.1107/S010827019600666X.
  27. 1 2 3 Autillo, Matthieu; Wilson, Richard E. (2017). "Phase Transitions in Tetramethylammonium Hexachlorometalate Compounds (TMA)2MCl6 (M = U, Np, Pt, Sn, Hf, Zr)". European Journal of Inorganic Chemistry. 2017 (41): 4834–4839. doi: 10.1002/ejic.201700764 .
  28. Cotton, F.A., P. A. Kibala, M. Matusz and R. B. W. Sandor (1991). "Structure of the Second Polymorph of Niobium Pentachloride". Acta Crystallogr. C . 47 (11): 2435–2437. doi:10.1107/S0108270191000239.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  29. Simon, Arndt; von Schnering, Hans-Georg; Schäfer, Harald (1968). "Beiträge zur Chemie der Elemente Niob und Tantal. LXIX K4Nb6Cl18 Darstellung, Eigenschaften und Struktur". Zeitschrift für anorganische und allgemeine Chemie. 361 (5–6): 235–248. doi:10.1002/zaac.19683610503.
  30. Rabe, Susanne; Bubenheim, Wilfried; Müller, Ulrich (2004). "Crystal Structures of Acetonitrile Solvates of Bis(tetraphenylphosphonium) Tetrachlorooxovanadate(IV), Hexachlorostannate(IV) and -Molybdate(IV), [P(C6H5)4]2[VOCl4] · 4CH3CN, [P(C6H5)4]2[MCl6]·4CH3CN (M = Sn, Mo)". Zeitschrift für Kristallographie - New Crystal Structures. 219 (2): 101–105. doi: 10.1524/ncrs.2004.219.2.101 . S2CID   201122319.
  31. 1 2 Brignole, A. B.; Cotton, F. A.; Dori, Z. (1972). "Rhenium and Molybdenum Compounds Containing Quadruple Bonds". Inorganic Syntheses. Vol. 13. pp. 81–89. doi:10.1002/9780470132449.ch15. ISBN   978-0-470-13244-9.{{cite book}}: |journal= ignored (help)
  32. 1 2 Cotton, F.A; Ucko, David A. (1972). "The Structure of Trimethylphenylammonium Nonachlorodirhodate(III) and a Survey of Metal-Metal Interactions in Confacial Bioctahedra". Inorganica Chimica Acta. 6: 161–172. doi:10.1016/S0020-1693(00)91778-X.
  33. R. A. D. Wentworth, R. Saillant, R. B. Jackson, W. E. Streib, K. Folting (1971). "Crystal structures of Cs3Cr2Br9, Cs3Mo2Cl9, and Cs3Mo2Br9". Inorg. Chem. 10 (7): 1453–1457. doi:10.1021/ic50101a027.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  34. Beck, J.; Wolf, F. (1997). "Three New Polymorphic Forms of Molybdenum Pentachloride". Acta Crystallogr. B53 (6): 895–903. doi: 10.1107/S0108768197008331 . S2CID   95489209.
  35. Hey, E.; Weller, F.; Dehnicke, K. (1984). "Synthese und Kristallstruktur von (PPh4)2[Mo2Cl10]". Zeitschrift für anorganische und allgemeine Chemie. 508: 86–92. doi:10.1002/zaac.19845080113.
  36. Ahmed, Ejaz; Ruck, Michael (2011). "Chemistry of Polynuclear Transition-Metal Complexes in Ionic Liquids". Dalton Transactions. 40 (37): 9347–57. doi:10.1039/c1dt10829h. PMID   21743925.
  37. Kei Inumaru, Takashi Kikudome, Hiroshi Fukuoka, Shoji Yamanaka (2008). "Reversible Emergence of a Self-Assembled Layered Structure From Three-Dimensional Isotropic Ionic Crystal of a Cluster Compound (4-HNC5H4OH)2Mo6Cl14 Driven By Absorption of Water and Alcohols". J. Am. Chem. Soc. 130 (31): 10038–10039. doi:10.1021/ja802752y. PMID   18613684.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  38. Baldas, J.; Bonnyman, J.; Samuels, D. L.; Williams, G. A. (1984). "Structure Studies of Technetium Complexes. VII. Structure of Tetraphenylarsonium Hexachlorotechnetate(IV), [As(C6H5)4]2[TcCl6]". Acta Crystallographica Section C Crystal Structure Communications. 40 (8): 1343–1346. doi:10.1107/S0108270184007903.
  39. Poineau, Frederic; Johnstone, Erik V.; Forster, Paul M.; Ma, Longzou; Sattelberger, Alfred P.; Czerwinski, Kenneth R. (2012). "Probing the Presence of Multiple Metal–Metal Bonds in Technetium Chlorides by X-ray Absorption Spectroscopy: Implications for Synthetic Chemistry". Inorganic Chemistry. 51 (17): 9563–9570. doi:10.1021/ic3014859. PMID   22906536.
  40. Sharutin, V. V.; Sharutina, O. K.; Senchurin, V. S.; Andreev, P. V. (2018). "Synthesis and Structure of Ruthenium Complexes [Ph
    3
    PR
    ]+2[RuCl
    6
    ]2− (R = C
    2
    H
    5
    , CH=CHCH
    3
    , CH
    2
    CH
    =CHCH
    3
    , CH
    2
    OCH
    3
    ), and [Ph
    3
    PCH
    2
    CH
    CHCH
    2
    PPh
    3
    ]2+2[Ru
    2
    Cl
    10
    O
    ]4− · 4H2O". Russian Journal of Inorganic Chemistry. 63 (9): 1178–1185. doi:10.1134/S0036023618090188. S2CID   105746627.
  41. I. A. Efimenko, T. A. Balakaeva, A. P. Kurbakova, A. S. Kanishcheva, A. V. Chuvaev, V. M. Stepanovich, Yu. N. Mikhailov (1992). Zh. Neorg. Khim. (Russ. J. Inorg. Chem.). 37: 1312.{{cite journal}}: Missing or empty |title= (help)CS1 maint: multiple names: authors list (link)
  42. Bino, Avi; Cotton, F. Albert (1980). "A Linear, Trinuclear, Mixed-Valence Chloro Complex of Ruthenium, [Ru3Cl12]4-". Journal of the American Chemical Society. 102 (2): 608–611. doi:10.1021/ja00522a027.
  43. Frank, Walter; Reiß, Guido J.; Kleinwächter, Ingo (1996). "Spezielle Alkylammoniumhexachlorometallate. I. Kristallisationsverhalten und Kristallstruktur von Diethylentriammoniumhexachlororhodat, [H3N(CH2)2NH2(CH2)2NH3] [RhCl6]". Zeitschrift für anorganische und allgemeine Chemie. 622 (4): 729–733. doi:10.1002/zaac.19966220428.
  44. Schwarz, Simon; Strähle, Joachim; Weisser, Ulrike (2002). "Synthese und Struktur der Komplexe [(n-Bu)4N]2[{(THF)Cl4Re≡N}2PdCl2], [Ph4P]2[(THF)Cl4Re≡N-Pd Cl(μ-Cl)]2 und [(n-Bu)4N]2[Pd3Cl8]". Zeitschrift für anorganische und allgemeine Chemie. 628 (11): 2495–2499. doi:10.1002/1521-3749(200211)628:11<2495::AID-ZAAC2495>3.0.CO;2-G.
  45. Fábry, Jan; Dušek, Michal; Fejfarová, Karla; Krupková, Radmila; Vaněk, Přemysl; Němec, Ivan (2004). "Two Phases of Bis(tetraethylammonium) Di-μ-chloro-bis[dichloropalladium(II)]". Acta Crystallographica Section C Crystal Structure Communications. 60 (9): m426–m430. doi:10.1107/S0108270104016725. PMID   15345822.
  46. Dell'Amico, Daniela Belli; Calderazzo, Fausto; Marchetti, Fabio; Ramello, Stefano (1996). "Molecular Structure of[Pd6Cl12] in Single Crystals Chemically Grown at Room Temperature". Angewandte Chemie International Edition in English. 35 (12): 1331–1333. doi:10.1002/anie.199613311.
  47. Helgesson, Goeran; Jagner, Susan (1991). "Halogenoargentate(I) with unusual coordination geometries. Synthesis and Structure of Potassium-crypt Salts of Chloro-, Bromo- and Iodoargentates(I), Including the First Example of a Two-Coordinated Chloroargentate(I) in the Solid State". Inorganic Chemistry. 30 (11): 2574–2577. doi:10.1021/ic00011a024.
  48. 1 2 Hao, Pengfei; Guo, Chunyu; Shen, Junju; Fu, Yunlong (2019). "A Novel Photochromic Hybrid Containing Trinuclear [Cd3Cl12]6− Clusters and Protonated Tripyridyl-Triazines". Dalton Transactions. 48 (44): 16497–16501. doi:10.1039/C9DT03494C. PMID   31559400. S2CID   203568412.
  49. Costin-Hogan, Christina E.; Chen, Chun-Long; Hughes, Emma; Pickett, Austin; Valencia, Richard; Rath, Nigam P.; Beatty, Alicia M. (2008). ""Reverse" engineering: Toward 0-D Cadmium Halide clusters". CrystEngComm. 10 (12): 1910. doi:10.1039/b812504j.
  50. Chen, Chun-Long; Beatty, Alicia M. (2007). "From Crystal Engineering to Cluster Engineering: How to Transform Cadmium Chloride from 2-D to 0-D". Chemical Communications (1): 76–78. doi:10.1039/B613761J. PMID   17279266.
  51. Neumüller, Bernhard; Dehnicke, Kurt (2004). "Die Kristallstrukturen von (Ph4P)2[HfCl6]2CH2Cl2 und (Ph4P)2[Hf2Cl10]CH2Cl2". Zeitschrift für anorganische und allgemeine Chemie. 630 (15): 2576–2578. doi:10.1002/zaac.200400370.
  52. Dötterl, Matthias; Haas, Isabelle; Alt, Helmut G. (2011). "Solubility Behaviour of TiCl4, ZrCl4, and HfCl4 in Chloroaluminate Ionic Liquids". Zeitschrift für anorganische und allgemeine Chemie. 637 (11): 1502–1506. doi:10.1002/zaac.201100244.
  53. Jacobson, Robert A.; Thaxton, Charles B. (1971). "Crystal structure of H2[Ta6Cl18].6H2O". Inorganic Chemistry. 10 (7): 1460–1463. doi:10.1021/ic50101a029.
  54. J. C. Taylor; P. W. Wilson (1974). "The Structure of β-Tungsten Hexachloride by Powder Neutron and X-ray Diffraction". Acta Crystallographica. B30 (5): 1216–1220. doi: 10.1107/S0567740874004572 .
  55. Lau, C.; Dietrich, A.; Plate, M.; Dierkes, P.; Neumüller, B.; Wocadlo, S.; Massa, W.; Harms, K.; Dehnicke, K. (2003). "Die Kristallstrukturen der Hexachlorometallate NH4[SbCl6], NH4[WCl6], [K(18-Krone-6)(CH2Cl2)]2[WCl6]·6CH2Cl2 und (PPh4)2[WCl6]·4CH3CN". Zeitschrift für anorganische und allgemeine Chemie. 629 (3): 473–478. doi:10.1002/zaac.200390078.
  56. Eichler, W.; Seifert, H.-J. (1977). "Strukturelle und magnetische Untersuchungen an Hexachlorowolframaten(V)". Zeitschrift für anorganische und allgemeine Chemie. 431: 123–133. doi:10.1002/zaac.19774310112.
  57. McCann, III, E. L.; Brown, T. M. (1972). Tungsten(V) Chloride. Inorganic Syntheses. Vol. XIII. pp. 150–154. doi:10.1002/9780470132449.ch29.
  58. Cotton, F. A.; Rice, C. E. (1978). "Tungsten Pentachloride". Acta Crystallogr. B34 (9): 2833–2834. doi:10.1107/S0567740878009322.
  59. Cotton, F. Albert; Mott, Graham N.; Schrock, Richard R.; Sturgeoff, Lynda G. (1982). "Preparation and Characterization of a Compound Containing the Octachloroditungstate (Tungsten-Tungsten Quadruple Bond) Ion, [W2Cl8]4-". Journal of the American Chemical Society. 104 (24): 6781–6782. doi:10.1021/ja00388a050.
  60. 1 2 Cotton, F. Albert; Falvello, Larry R.; Mott, Graham N.; Schrock, Richard R.; Sturgeoff, Lynda G. (1983). "Structural Characterization of the Nonachloroditungsten(II, III) Ion". Inorganic Chemistry. 22 (18): 2621–2623. doi:10.1021/ic00160a031.
  61. 1 2 3 Kolesnichenko, Vladimir; Luci, Jeffrey J.; Swenson, Dale C.; Messerle, Louis (1998). "W3(μ3-Cl)(μ-Cl)3Cl9n-(n= 2, 3), Discrete Monocapped Tritungsten Clusters Derived from a New Binary Tungsten Chloride, W3Cl10: Effect of Electron Count on Bonding in Isostructural Triangulo M3X13 Clusters1". Journal of the American Chemical Society. 120 (50): 13260–13261. doi:10.1021/ja9831958.
  62. Kolesnichenko, Vladimir; Messerle, Louis (1998). "Facile Reduction of Tungsten Halides with Nonconventional, Mild Reductants. 2. Four Convenient, High-Yield Solid-State Syntheses of the Hexatungsten Dodecachloride Cluster W6Cl12 and Cluster Acid (H3O)2[W63-Cl)8Cl6](OH2)x, Including New Cation-Assisted Ternary Routes". Inorganic Chemistry. 37 (15): 3660–3663. doi:10.1021/ic980232n. PMID   11670462.
  63. Arp, O.; Preetz, W. (1994). "Darstellung, Schwingungsspektren und Normalkoordinatenanalyse von Hexachlororhenat(V) sowie Kristallstruktur von [P(C6H5)4] [ReCl6]". Zeitschrift für anorganische und allgemeine Chemie. 620 (8): 1391–1396. doi:10.1002/zaac.19946200811.
  64. Chau, C.-N.; Wardle, R. W. M.; Ibers, J. A. (1988). "Structure of Di[bis(triphenylphosphine)iminium] Hexachlororhenate(IV)". Acta Crystallographica Section C. 44 (4): 751–753. doi:10.1107/S0108270187011910.
  65. 1 2 Heath, Graham A.; McGrady, John E.; Raptis, Raphael G.; Willis, Anthony C. (1996). "Valence-Dependent Metal−Metal Bonding and Optical Spectra in Confacial Bioctahedral [Re2Cl9]z- (z= 1, 2, 3). Crystallographic and Computational Characterization of [Re2Cl9]and [Re2Cl9]2-". Inorganic Chemistry. 35 (23): 6838–6843. doi:10.1021/ic951604k. PMID   11666851.
  66. 1 2 Krebs, B.; Henkel, G.; Dartmann, M.; Preetz, W.; Bruns, M. (1984). "Reaktionen und Strukturen von [(C2H5)4N][OsCl6] und [(n-C4H9)4N]2[Os2Cl10]". Z. Naturforsch. 39 (7): 843. doi: 10.1515/znb-1984-0701 . S2CID   95254820.
  67. 1 2 Kim, Eunice E.; Eriks, Klaas; Magnuson, Roy (1984). "Crystal Structures of the Tetraphenylphosphonium salts of Hexachloroosmate(V) and Hexachloroosmate(IV), [(C6H5)4P]OsCl6 and [(C6H5)4P]2OsCl6". Inorganic Chemistry. 23 (4): 393–397. doi:10.1021/ic00172a003.
  68. Agaskar, Pradyot A.; Cotton, F. Albert.; Dunbar, Kim R.; Falvello, Larry R.; Tetrick, Stephen M.; Walton, Richard A. (1986). "The Multiply Bonded Octahalodiosmate(III) Anions. 2. Structure and Bonding". Journal of the American Chemical Society. 108 (16): 4850–4855. doi:10.1021/ja00276a024.
  69. Rankin, DA; Penfold, BR; Fergusson, JE (1983). "The Chloro and Bromo Complexes of Iridium(III) and Iridium(IV). II. Structural Chemistry of IrIII Complexes". Australian Journal of Chemistry. 36 (5): 871. doi:10.1071/CH9830871.
  70. Sanchis-Perucho, Adrián; Martínez-Lillo, José (2019). "Ferromagnetic Exchange Interaction in a New Ir(IV)–Cu(II) Chain Based on the Hexachloroiridate(IV) Anion". Dalton Transactions. 48 (37): 13925–13930. doi:10.1039/C9DT02884F. PMID   31411207. S2CID   199574461.
  71. Yellowlees, L.; Elliot, M.; Parsons, S.; Messenger, D. "MASNEA". Cambridge Crystallographic Database CCDC 278284.
  72. 1 2 Belli Dell'Amico, Daniela; Calderazzo, Fausto; Marchetti, Fabio; Ramello, Stefano; Samaritani, Simona (2008). "Simple Preparations of Pd6Cl12, Pt6Cl12, and Qn[Pt2Cl8+n],n= 1, 2 (Q = TBA+, PPN+) and Structural Characterization of [TBA] [Pt2Cl9] and [PPN]2[Pt2Cl10]·C7H8". Inorganic Chemistry. 47 (3): 1237–1242. doi:10.1021/ic701932u. PMID   18166044.
  73. von Schnering, Hans Georg; Chang, Jen-Hui; Peters, Karl; Peters, Eva-Maria; Wagner, Frank R.; Grin, Yuri; Thiele, Gerhard (2003). "Structure and Bonding of the Hexameric Platinum(II) Dichloride, Pt6Cl12 (β-PtCl2)". Zeitschrift für Anorganische und Allgemeine Chemie. 629 (3): 516–522. doi:10.1002/zaac.200390084.
  74. Helgesson, Göran; Jagner, Susan; Vicentini, G.; Rodellas, C.; Niinistö, L. (1987). "Crystal Structures of Tetraethylammonium Dichloroaurate(I) and Tetraethylammonium Diiodoaurate(I)". Acta Chemica Scandinavica. 41a: 556–561. doi: 10.3891/acta.chem.scand.41a-0556 .
  75. Dell'Amico, Daniela Belli; Calderazzo, Fausto; Marchetti, Fabio; Merlino, Stefano; Perego, Giovanni (1977). "X-Ray crystal and molecular structure of Au4Cl8, the product of the reduction of Au2Cl6 by Au(CO)Cl". Journal of the Chemical Society, Chemical Communications (1): 31. doi:10.1039/C39770000031.
  76. Buckley, Robbie W.; Healy, Peter C.; Loughlin, Wendy A. (1997). "Reduction of [NBu4] [AuCl4] to [NBu4] [AuCl2] with Sodium Acetylacetonate". Australian Journal of Chemistry. 50 (7): 775. doi:10.1071/C97029.
  77. Goggin, Peter L.; King, Paul; McEwan, David M.; Taylor, Graham E.; Woodward, Peter; Sandström, Magnus (1982). "Vibrational Spectroscopic Studies of Tetra-n-butylammonium Trihalogenomercurates; Crystal Structures of [NBun4](HgCl3) and [NBun4(HgI3)". Journal of the Chemical Society, Dalton Transactions (5): 875–882. doi:10.1039/dt9820000875.
  78. Waizumi, K.; Masuda, H.; Ohtaki, H. (1992). "X-ray Structural Studies of FeBr2 · 4 H2O, CoBr2 · 4 H2O, NiCl2 · 4 H2O, and CuBr2 · 4 H2O. cis/trans Selectivity in Transition Metal(II) dihalide Tetrahydrate". Inorganica Chimica Acta. 192: 173–181. doi:10.1016/S0020-1693(00)80756-2.
  79. Morosin, B. (1967). "An X-ray Diffraction Study on Nickel(II) Chloride Dihydrate". Acta Crystallographica. 23 (4): 630–634. doi:10.1107/S0365110X67003305.
  80. 1 2 Donovan, William F.; Smith, Peter W. (1975). "Crystal and Molecular Structures of Aquahalogenovanadium(III) Complexes. Part I. X-Ray Crystal Structure of trans-Tetrakisaquadibromo-Vanadium(III) Bromide Dihydrate and the Isomorphous Chloro- Compound". Journal of the Chemical Society, Dalton Transactions (10): 894. doi:10.1039/DT9750000894.
  81. Andress, K.R.; Carpenter, C. "Kristallhydrate. II.Die Struktur von Chromchlorid- und Aluminiumchloridhexahydrat" Zeitschrift für Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie 1934, volume 87, p446-p463.
  82. Zalkin, Allan; Forrester, J. D.; Templeton, David H. (1964). "Crystal structure of manganese dichloride tetrahydrate". Inorganic Chemistry. 3 (4): 529–33. doi:10.1021/ic50014a017.
  83. Lind, M. D. (1967). "Crystal Structure of Ferric Chloride Hexahydrate". The Journal of Chemical Physics. 47 (3): 990–993. Bibcode:1967JChPh..47..990L. doi: 10.1063/1.1712067 .
  84. Simon A. Cotton (2018). "Iron(III) chloride and its coordination chemistry". Journal of Coordination Chemistry. 71 (21): 3415–3443. doi:10.1080/00958972.2018.1519188. S2CID   105925459.