N-Acetylaspartylglutamic acid

Last updated
N-Acetylaspartylglutamic acid
Acetylaspartylglutamic acid.png
Names
Systematic IUPAC name
(2S)-2-[(2S)-2-Acetamido-3-carboxypropanamido]pentanedioic acid
Other names
  • N-Acetyl-L-α-aspartyl-L-glutamic acid
  • N-Acetyl-1-aspartylglutamic acid[ citation needed ]
  • Isospaglumic acid
  • Spaglumic acid [1] [2]
Identifiers
3D model (JSmol)
AbbreviationsNAAG
ChemSpider
ECHA InfoCard 100.163.604 OOjs UI icon edit-ltr-progressive.svg
MeSH N-acetyl-1-aspartylglutamic+acid
PubChem CID
UNII
  • InChI=1S/C11H16N2O8/c1-5(14)12-7(4-9(17)18)10(19)13-6(11(20)21)2-3-8(15)16/h6-7H,2-4H2,1H3,(H,12,14)(H,13,19)(H,15,16)(H,17,18)(H,20,21)/t6-,7-/m0/s1 Yes check.svgY
    Key: OPVPGKGADVGKTG-BQBZGAKWSA-N Yes check.svgY
  • CC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O
Properties
C11H16N2O8
Molar mass 304.255 g·mol−1
Pharmacology
R01AC05 ( WHO ) S01GX03 ( WHO )
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

N-Acetylaspartylglutamic acid (N-acetylaspartylglutamate or NAAG) is a peptide neurotransmitter and the third-most-prevalent neurotransmitter in the mammalian nervous system. NAAG consists of N-acetylaspartic acid (NAA) and glutamic acid coupled via a peptide bond.

Contents

NAAG was discovered as a nervous system-specific peptide in 1965 by Curatolo and colleagues [3] but initially disregarded as a neurotransmitter and not extensively studied. However it meets the criteria for a neurotransmitter, including being concentrated in neurons, packed in synaptic vesicles, released in a calcium-dependent manner, and hydrolyzed in the synaptic space by enzymatic activity.

NAAG activates a specific receptor, the metabotropic glutamate receptor type 3. It is synthesized enzymatically from its two precursors and catabolized by NAAG peptidases in the synapse. The inhibition of the latter enzymes has potentially important therapeutic effects in animal models of several neurologic conditions and disorders.

Under the INN spaglumic acid, [1] [2] NAAG is used as an antiallergic medication in eye drops and nasal preparations.

Research history

After its discovery in 1965, NAAG was disregarded as a neurotransmitter for several reasons. First, neuropeptides were not considered neurotransmitters until years later. Second, it did not seem to directly affect membrane potential, so it was classified as a metabolic intermediate. The importance of brain peptides became clearer with the discovery of endogenous opioids. Whereas the ability of NAAG to interact with NMDA receptors in a manner relevant to physiology is controversial, its primary receptor was long believed to be the mGluR3. Its interaction with the mGluR3 causes an activation of G proteins that reduce the concentration of the second messengers cAMP and cGMP in both the nerve cells and glia. This can lead to several changes in the cellular activity, including regulation of gene expression, reduction in the release of transmitter, and inhibition of long-term potentiation. [4] [5] Stimulation of the mGluR3 by NAAG has been, however, questioned, finding relevant glutamate contamination in commercially available NAAG. [6] [7]

According to one publication, NAAG can be differentiated from NAA in vivo by MR spectroscopy at 3 Tesla. [8]

Biosynthesis

NAAG synthetase activity mediates the biosynthesis of NAAG from glutamate and NAA, but little is known about the mechanism or regulation of this enzyme, and no NAAG synthetase activity has been isolated in cell-free preparations. Since other neuropeptides and nearly all vertebrate peptides are synthesized by post-translational processing, NAAG synthetase activity is relatively unique. As with NAA, the synthesis of NAAG is primarily restricted to neurons, although glial cells also contain and synthesize this peptide. In vitro, NAAG synthesis appears to be regulated by the availability of its precursor, NAA. In addition, during differentiation of neuroblastoma cells, it has been shown that a protein kinase A (PKA) activator will increase the quantity of NAAG, while a protein kinase C (PKC) activator will decrease its concentration. This finding suggests that PKA and PKC have opposing regulatory effects on the NAAG synthetase enzyme. [9] [10]

Catabolism

NAAG is catabolized via NAAG peptidase activity. Two enzymes with NAAG peptidase activity have been cloned, glutamate carboxypeptidase II and glutamate carboxypeptidase III. These enzymes mediate the hydrolysis of NAAG to NAA and glutamate. Their inhibition can produce therapeutic benefits. Two main types of inhibitors of this enzyme are known: compounds related to 2-(phosphonomethyl)pentanedioic acid (2-PMPA) and urea-based analogs of NAAG, including ZJ43, ZJ17, and ZJ11. In rat models, ZJ43 and 2-PMPA reduce perception of inflammatory and neuropathic pain when administered systemically, intracerebrally, or locally, suggesting that NAAG modulates neurotransmission in pain circuits via mGlu3 receptors. The inhibition of NAAG hydrolysis increases the concentration of NAAG in the synaptic space analogous to the effects of MAOIs in increasing the concentration of serotonin. This elevated NAAG gives greater activation of presynaptic mGluR3 receptors, which decrease release of transmitter (glutamate) in the pain signaling pathways of the spinal cord and brain. In the case of traumatic brain injury, the injection of a NAAG peptidase inhibitor reduces neuron and astrocyte death in the hippocampus nearest the site of the injury. In a mouse model of amyotrophic lateral sclerosis (ALS), the chronic inhibition of NAAG peptidase activity delayed the onset of ALS symptoms and slowed the progress of the neuronal death. To model schizophrenia, animals were injected with phencyclidine (PCP) and, therefore, exhibited symptoms of the disorder, such as social withdrawal and motor responses. Upon injection with ZJ43, these behaviors were decreased, suggesting that an increase in NAAG in the synapse — and its subsequent activation of mGluR3 receptors — has potential as a co-therapy for schizophrenia. In these cases, NAAG peptidase inhibition reduces the adverse effects in these disorders. Future research focuses on the role of NAAG in pain perception, brain injury, and schizophrenia while developing NAAG peptidase inhibitors with even greater ability to cross the blood–brain barrier. [11] [12] [13] [14] [15] [16][17]

See also

Related Research Articles

<span class="mw-page-title-main">Neurotransmitter receptor</span> Type of protein

A neurotransmitter receptor is a membrane receptor protein that is activated by a neurotransmitter. Chemicals on the outside of the cell, such as a neurotransmitter, can bump into the cell's membrane, in which there are receptors. If a neurotransmitter bumps into its corresponding receptor, they will bind and can trigger other events to occur inside the cell. Therefore, a membrane receptor is part of the molecular machinery that allows cells to communicate with one another. A neurotransmitter receptor is a class of receptors that specifically binds with neurotransmitters as opposed to other molecules.

<span class="mw-page-title-main">Ibotenic acid</span> Glutamate receptor agonist and neurotoxin

Ibotenic acid or (S)-2-amino-2-(3-hydroxyisoxazol-5-yl)acetic acid, also referred to as ibotenate, is a chemical compound and psychoactive drug which occurs naturally in Amanita muscaria and related species of mushrooms typically found in the temperate and boreal regions of the northern hemisphere. It is a prodrug of muscimol, broken down by the liver to that much more stable compound. It is a conformationally-restricted analogue of the neurotransmitter glutamate, and due to its structural similarity to this neurotransmitter, acts as a non-selective glutamate receptor agonist. Because of this, ibotenic acid can be a powerful neurotoxin in high doses, and is employed as a "brain-lesioning agent" through cranial injections in scientific research. The neurotoxic effects appear to be dose-related and risks are unclear through consumption of ibotenic-acid containing fungi, although thought to be negligible in small doses.

Molecular neuroscience is a branch of neuroscience that observes concepts in molecular biology applied to the nervous systems of animals. The scope of this subject covers topics such as molecular neuroanatomy, mechanisms of molecular signaling in the nervous system, the effects of genetics and epigenetics on neuronal development, and the molecular basis for neuroplasticity and neurodegenerative diseases. As with molecular biology, molecular neuroscience is a relatively new field that is considerably dynamic.

<span class="mw-page-title-main">Kainic acid</span> Chemical compound

Kainic acid, or kainate, is an acid that naturally occurs in some seaweed. Kainic acid is a potent neuroexcitatory amino acid agonist that acts by activating receptors for glutamate, the principal excitatory neurotransmitter in the central nervous system. Glutamate is produced by the cell's metabolic processes and there are four major classifications of glutamate receptors: NMDA receptors, AMPA receptors, kainate receptors, and the metabotropic glutamate receptors. Kainic acid is an agonist for kainate receptors, a type of ionotropic glutamate receptor. Kainate receptors likely control a sodium channel that produces excitatory postsynaptic potentials (EPSPs) when glutamate binds.

<span class="mw-page-title-main">Metabotropic glutamate receptor</span> Type of glutamate receptor

The metabotropic glutamate receptors, or mGluRs, are a type of glutamate receptor that are active through an indirect metabotropic process. They are members of the group C family of G-protein-coupled receptors, or GPCRs. Like all glutamate receptors, mGluRs bind with glutamate, an amino acid that functions as an excitatory neurotransmitter.

<span class="mw-page-title-main">Glutamate receptor</span> Cell-surface proteins that bind glutamate and trigger changes which influence the behavior of cells

Glutamate receptors are synaptic and non synaptic receptors located primarily on the membranes of neuronal and glial cells. Glutamate is abundant in the human body, but particularly in the nervous system and especially prominent in the human brain where it is the body's most prominent neurotransmitter, the brain's main excitatory neurotransmitter, and also the precursor for GABA, the brain's main inhibitory neurotransmitter. Glutamate receptors are responsible for the glutamate-mediated postsynaptic excitation of neural cells, and are important for neural communication, memory formation, learning, and regulation.

<i>N</i>-Acetylaspartic acid Derivative of aspartic acid found in the brain

N-Acetylaspartic acid, or N-acetylaspartate (NAA), is a derivative of aspartic acid with a formula of C6H9NO5 and a molecular weight of 175.139.

<span class="mw-page-title-main">Quisqualic acid</span> Chemical compound

Quisqualic acid is an agonist of the AMPA, kainate, and group I metabotropic glutamate receptors. It is one of the most potent AMPA receptor agonists known. It causes excitotoxicity and is used in neuroscience to selectively destroy neurons in the brain or spinal cord. Quisqualic acid occurs naturally in the seeds of Quisqualis species.

<span class="mw-page-title-main">Glutamate carboxypeptidase II</span> Enzyme

TAH molecule, also known as N-acetyl-L-aspartyl-L-glutamate peptidase I, NAAG peptidase, or prostate-specific membrane antigen (PSMA) is an enzyme that in humans is encoded by the FOLH1 gene. Human GCPII contains 750 amino acids and weighs approximately 84 kDa.

<span class="mw-page-title-main">GRIA3</span> Protein-coding gene in humans

Glutamate receptor 3 is a protein that in humans is encoded by the GRIA3 gene.

<span class="mw-page-title-main">Metabotropic glutamate receptor 1</span> Mammalian protein found in humans

The glutamate receptor, metabotropic 1, also known as GRM1, is a human gene which encodes the metabotropic glutamate receptor 1 (mGluR1) protein.

<span class="mw-page-title-main">Metabotropic glutamate receptor 2</span> Mammalian protein found in humans

Metabotropic glutamate receptor 2 (mGluR2) is a protein that, in humans, is encoded by the GRM2 gene. mGluR2 is a G protein-coupled receptor (GPCR) that couples with the Gi alpha subunit. The receptor functions as an autoreceptor for glutamate, that upon activation, inhibits the emptying of vesicular contents at the presynaptic terminal of glutamatergic neurons.

<span class="mw-page-title-main">Metabotropic glutamate receptor 3</span> Mammalian protein found in humans

Metabotropic glutamate receptor 3 (mGluR3) is an inhibitory Gi/G0-coupled G-protein coupled receptor (GPCR) generally localized to presynaptic sites of neurons in classical circuits. However, in higher cortical circuits in primates, mGluR3 are localized post-synaptically, where they strengthen rather than weaken synaptic connectivity. In humans, mGluR3 is encoded by the GRM3 gene. Deficits in mGluR3 signaling have been linked to impaired cognition in humans, and to increased risk of schizophrenia, consistent with their expanding role in cortical evolution.

<span class="mw-page-title-main">Metabotropic glutamate receptor 4</span> Mammalian protein found in humans

Metabotropic glutamate receptor 4 is a protein that in humans is encoded by the GRM4 gene.

<span class="mw-page-title-main">Metabotropic glutamate receptor 5</span> Mammalian protein found in humans

Metabotropic glutamate receptor 5 is an excitatory Gq-coupled G protein-coupled receptor predominantly expressed on the postsynaptic sites of neurons. In humans, it is encoded by the GRM5 gene.

<span class="mw-page-title-main">Metabotropic glutamate receptor 6</span> Mammalian protein found in humans

Glutamate receptor, metabotropic 6, also known as GRM6 or mGluR6, is a protein which in humans is encoded by the GRM6 gene.

<span class="mw-page-title-main">Metabotropic glutamate receptor 7</span> Mammalian protein found in humans

Metabotropic glutamate receptor 7 is a protein that in humans is encoded by the GRM7 gene.

<span class="mw-page-title-main">Metabotropic glutamate receptor 8</span> Mammalian protein found in humans

Metabotropic glutamate receptor 8 is a protein that in humans is encoded by the GRM8 gene.

<span class="mw-page-title-main">Eglumetad</span> Chemical compound

Eglumetad is a research drug developed by Eli Lilly and Company, which is being investigated for its potential in the treatment of anxiety and drug addiction. It is a glutamate derived compound and its mode of action implies a novel mechanism.

<span class="mw-page-title-main">Glutamate (neurotransmitter)</span> Anion of glutamic acid in its role as a neurotransmitter

In neuroscience, glutamate is the anion of glutamic acid in its role as a neurotransmitter. It is by a wide margin the most abundant excitatory neurotransmitter in the vertebrate nervous system. It is used by every major excitatory function in the vertebrate brain, accounting in total for well over 90% of the synaptic connections in the human brain. It also serves as the primary neurotransmitter for some localized brain regions, such as cerebellum granule cells.

References

  1. 1 2 Spaglumic Acid, drugs.com
  2. 1 2 This is a misnomer: "spaglumic acid" is the β-aspartyl isomer whereas "isospaglumic acid" is the α-aspartyl isomer. See PubChem entry for "spaglumic acid".
  3. CURATOLO A, D ARCANGELO P, LINO A, BRANCATI A (1965). "Distribution Of N-Acetyl-Aspartic And N-Acetyl-Aspartyl-Glutamic Acids In Nervous Tissue". J. Neurochem. 12 (4): 339–42. doi:10.1111/j.1471-4159.1965.tb06771.x. PMID   14340686. S2CID   29248053.
  4. Coyle, J.T. (1997). "The nagging question of the function of N-acetylaspartylglutamate". Neurobiology of Disease. 4 (3–4): 231–8. doi:10.1006/nbdi.1997.0153. PMID   9361299. S2CID   35316779.
  5. Neale, J.H.; Bzdega, T.; Wroblewska, B. (2000). "N-Acetylaspartylglutamate: The Most Abundant Peptide Neurotransmitter in the Mammalian Central Nervous System". Journal of Neurochemistry. 75 (2): 443–452. doi:10.1046/j.1471-4159.2000.0750443.x. PMID   10899918. S2CID   24983894.
  6. Fricker, A.-C.; Mok, M.H.S.; de la Flor, R.; Shah, A.J.; Woolley, M.; Dawson, L.A.; Kew, J.N.C. (2009). "Effects of N-acetylaspartylglutamate (NAAG) at group II mGluRs and NMDAR". Neuropharmacology. 56 (6–7): 1060–67. doi:10.1016/j.neuropharm.2009.03.002. PMID   19285517. S2CID   35139256.
  7. Chopra, M.; Yao, Y.; Blake, T.J.; Hampson, D.R.; Johnson, E.C. (2009). "The neuroactive peptide N-acetylaspartylglutamate is not an agonist at the metabotropic glutamate receptor subtype 3 of metabotropic glutamate receptor". The Journal of Pharmacology and Experimental Therapeutics. 330 (1): 212–19. doi:10.1124/jpet.109.152553. PMID   19389924. S2CID   16838369.
  8. Edden RA, Pomper MG, Barker PB (2007). "In vivo differentiation of N-acetyl aspartyl glutamate from N-acetyl aspartate at 3 Tesla". Magnetic Resonance in Medicine. 57 (6): 977–82. doi: 10.1002/mrm.21234 . PMID   17534922. S2CID   30929036.
  9. Gehl, Laura; Omar Saab; Tomasz Bzdega; Barbara Wroblewska & Joseph Neale (2004). "Biosynthesis of NAAG by an enzyme-mediate process in rat central nervous neurons and glia". Journal of Neurochemistry. 90 (4): 989–997. doi: 10.1111/j.1471-4159.2004.02578.x . PMID   15287905.
  10. Arun, P.; Madhavarao, C.N.; Moffett, J.R.; Namboodiri, M.A.A. (2006). "Regulation of N-acetylaspartate and N-acetylaspartylglutamate biosynthesis by protein kinase activators". Journal of Neurochemistry. 98 (6): 2034–2042. doi:10.1111/j.1471-4159.2006.04068.x. PMID   16945114. S2CID   4464084.
  11. Riveros, N.; Orrego, F. (1984). "A study of possible excitatory effects of N-acetylaspartylglutamate in different in vivo and in vitro brain preparations". Brain Research. 299 (2): 393–395. doi:10.1016/0006-8993(84)90727-3. PMID   6145497. S2CID   33135015.
  12. Yamamoto, T.; Saito, O.; Aoe, T.; Bartolozzi, A.; Sarva, J.; Kozikowski, A.; Wroblewska, B.; Bzdega, T. & Neale, J. H. (2007). "Local Administration of N-Acetylaspartylglutamate (NAAG) Peptidase Inhibitors Is Analgesic in Peripheral Pain". European Journal of Neuroscience. 25 (1): 147–158. doi:10.1111/j.1460-9568.2006.05272.x. PMID   17241276. S2CID   8951718.
  13. Zhou, J; Neale, J.H; Pomper, M.G.; Kozikowski, A.P (2005). "NAAG Peptidase Inhibitors and their Potential for Diagnosis and Therapy". Nature Reviews Drug Discovery. 4 (12): 1015–1026. doi:10.1038/nrd1903. PMID   16341066. S2CID   21807952.
  14. Neale, J.H.; Olszewski, R.T.; Gehl, L.M.; Wroblewska, B.; Bzdega, T. (2005). "The neurotransmitter N-acetylaspartyl-glutamate in models of pain, ALS, diabetic neuropathy, CNS injury and schizophrenia". Trends in Pharmacological Sciences. 26 (9): 477–484. doi:10.1016/j.tips.2005.07.004. PMID   16055199.
  15. Olszewski, R.T.; Wegorzewska, M.M.; Monteiro, A.C.; Krolikowski, K.A.; Zhou, J.; Kozikowski, A.P.; Long, K.; Mastropaolo, J.; Deutsch, S.I. & Neale, J.H. (2007). "Phencyclidine and Dizocilpine Induced Behaviors Reduced by N-acetylaspartylglutamate Peptidase Inhibition via Metabotropic Glutamate Receptors". Biological Psychiatry. 63 (1): 86–91. doi:10.1016/j.biopsych.2007.04.016. PMC   2185547 . PMID   17597589.

16. Neale JH, Olszewski R. (2019) "A role for N-acetylaspartylglutamate (NAAG) and mGluR3 in cognition" Neurobiol Learn Mem. 2019 Feb;158:9-13. doi: 10.1016/j.nlm.2019.01.006. PMID: 30630041. 17. Neale JH, Yamamoto T. (2020) "N-acetylaspartylglutamate (NAAG) and glutamate carboxypeptidase II: An abundant peptide neurotransmitter-enzyme system with multiple clinical applications" Prog Neurobiol.184:101722. doi: 10.1016/j.pneurobio.2019.101722. PMID: 31730793