Prajmaline

Last updated
Prajmaline
Prajmaline.svg
Clinical data
ATC code
Identifiers
  • (4α,16R,17R,21α)-4-propylajmalan-4-ium-17,21-diol
CAS Number
PubChem CID
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula C23H33N2O2+
Molar mass 369.529 g·mol−1
3D model (JSmol)
  • O[C@@H]6C4[C@@H]2C[C@]65c1ccccc1N(C)[C@H]5[C@@H]3C[C@H]4[C@H](CC)[C@@H](O)[N+]23CCC
  • InChI=1S/C23H33N2O2/c1-4-10-25-17-11-14(13(5-2)22(25)27)19-18(25)12-23(21(19)26)15-8-6-7-9-16(15)24(3)20(17)23/h6-9,13-14,17-22,26-27H,4-5,10-12H2,1-3H3/q+1/t13-,14-,17-,18-,19?,20-,21+,22+,23+,25?/m0/s1 Yes check.svgY
  • Key:UAUHEPXILIZYCU-UUEXUKNBSA-N Yes check.svgY
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Prajmaline (Neo-gilurythmal) [1] is a class Ia antiarrhythmic agent [2] which has been available since the 1970s. [3] Class Ia drugs increase the time one action potential lasts in the heart. [4] Prajmaline is a semi-synthetic propyl derivative of ajmaline, with a higher bioavailability than its predecessor. [5] It acts to stop arrhythmias of the heart through a frequency-dependent block of cardiac sodium channels. [2]

Contents

Mechanism

Prajmaline causes a resting block in the heart. [6] A resting block is the depression of a person's Vmax after a resting period. This effect is seen more in the atrium than the ventricle. [6] The effects of some Class I antiarrhythmics are only seen in a patient who has a normal heart rate (~1 Hz). [7] This is due to the effect of a phenomenon called reverse use dependence. [7] The higher the heart rate, the less effect Prajmaline will have.

Uses

The drug Prajmaline has been used to treat a number of cardiac disorders. These include: coronary artery disease, [8] [9] angina, [8] [9] paroxysmal tachycardia and Wolff–Parkinson–White syndrome. [1] Prajmaline has been indicated in the treatment of certain disorders where other antiarrhythmic drugs were not effective. [1]

Administration

Prajmaline can be administered orally, [9] parenterally [8] or intravenously. [8] Three days after the last dose, a limited effect has been observed. Therefore, it has been suggested that treatment of arrhythmias with Prajmaline must be continuous to see acceptable results. [1]

Pharmacokinetics

The main metabolites of Prajmaline are: 21-carboxyprajmaline and hydroxyprajmaline. Twenty percent of the drug is excreted in the urine unchanged.

Daily therapeutic dose is 40–80 mg. Distribution half-life is 10 minutes. Plasma protein binding is 60%. Oral bioavailability is 80%. Elimination half-life is 6 hours. Volume of distribution is 4-5 L/kg. [3]

Side Effects

There are no significant adverse side-effects of Prajmaline when taken alone and with a proper dosage. [1] [8] [9] Patients who are taking other treatments for their symptoms (e.g. beta blockers and nifedipine) have developed minor transient conduction defects when given Prajmaline. [8]

Overdose

An overdose of Prajmaline is possible. The range of symptoms seen during a Prajmaline overdose include: no symptoms, nausea/vomiting, bradycardia, tachycardia, hypotension, and death. [3]

Other Potential Uses

Due to Prajmaline's sodium channel-blocking properties, it has been shown to protect rat white matter from anoxia (82 +/- 15%). [10] [11] The concentration used causes little suppression of the preanoxic response. [10] [11]

Related Research Articles

<span class="mw-page-title-main">Propranolol</span> Beta blocker drug

Propranolol, sold under the brand name Inderal among others, is a medication of the beta blocker class. It is used to treat high blood pressure, a number of types of irregular heart rate, thyrotoxicosis, capillary hemangiomas, performance anxiety, and essential tremors, as well to prevent migraine headaches, and to prevent further heart problems in those with angina or previous heart attacks. It can be taken orally or by intravenous injection. The formulation that is taken orally comes in short-acting and long-acting versions. Propranolol appears in the blood after 30 minutes and has a maximum effect between 60 and 90 minutes when taken orally.

Calcium channel blockers (CCB), calcium channel antagonists or calcium antagonists are a group of medications that disrupt the movement of calcium through calcium channels. Calcium channel blockers are used as antihypertensive drugs, i.e., as medications to decrease blood pressure in patients with hypertension. CCBs are particularly effective against large vessel stiffness, one of the common causes of elevated systolic blood pressure in elderly patients. Calcium channel blockers are also frequently used to alter heart rate, to prevent peripheral and cerebral vasospasm, and to reduce chest pain caused by angina pectoris.

<span class="mw-page-title-main">Verapamil</span> Calcium channel blocker medication

Verapamil, sold under various trade names, is a calcium channel blocker medication used for the treatment of high blood pressure, angina, and supraventricular tachycardia. It may also be used for the prevention of migraines and cluster headaches. It is given by mouth or by injection into a vein.


Antiarrhythmic agents, also known as cardiac dysrhythmia medications, are a group of pharmaceuticals that are used to suppress abnormally fast rhythms (tachycardias), such as atrial fibrillation, supraventricular tachycardia and ventricular tachycardia.

<span class="mw-page-title-main">Quinidine</span> Antiarrythmic medication

Quinidine is a class IA antiarrhythmic agent used to treat heart rhythm disturbances. It is a diastereomer of antimalarial agent quinine, originally derived from the bark of the cinchona tree. The drug causes increased action potential duration, as well as a prolonged QT interval. As of 2019, its IV formulation is no longer being manufactured for use in the United States.

<span class="mw-page-title-main">Amiodarone</span> Antiarrhythmic medication used for various types of irregular heartbeats

Amiodarone is an antiarrhythmic medication used to treat and prevent a number of types of cardiac dysrhythmias. This includes ventricular tachycardia (VT), ventricular fibrillation (VF), and wide complex tachycardia, as well as atrial fibrillation and paroxysmal supraventricular tachycardia. Evidence in cardiac arrest, however, is poor. It can be given by mouth, intravenously, or intraosseously. When used by mouth, it can take a few weeks for effects to begin.

<span class="mw-page-title-main">Diltiazem</span> Calcium channel blocker medication

Diltiazem, sold under the brand name Cardizem among others, is a calcium channel blocker medication used to treat high blood pressure, angina, and certain heart arrhythmias. It may also be used in hyperthyroidism if beta blockers cannot be used. It is taken by mouth or injection into a vein. When given by injection, effects typically begin within a few minutes and last a few hours.

<span class="mw-page-title-main">Flecainide</span> Antiarrhythmic medication used to prevent and treat tachyarrhythmias

Flecainide is a medication used to prevent and treat abnormally fast heart rates. This includes ventricular and supraventricular tachycardias. Its use is only recommended in those with dangerous arrhythmias or when significant symptoms cannot be managed with other treatments. Its use does not decrease a person's risk of death. It is taken by mouth or injection into a vein.

<span class="mw-page-title-main">Sotalol</span> Medication

Sotalol, sold under the brand name Betapace among others, is a medication used to treat and prevent abnormal heart rhythms. Evidence does not support a decreased risk of death with long term use. It is taken by mouth or given by injection into a vein.

<span class="mw-page-title-main">Pindolol</span> Chemical compound

Pindolol, sold under the brand name Visken among others, is a nonselective beta blocker which is used in the treatment of hypertension. It is also an antagonist of the serotonin 5-HT1A receptor, preferentially blocking inhibitory 5-HT1A autoreceptors, and has been researched as an add-on therapy to selective serotonin reuptake inhibitors (SSRIs) in the treatment of depression.

<span class="mw-page-title-main">Moxonidine</span> Chemical compound

Moxonidine (INN) is a new-generation alpha-2/imidazoline receptor agonist antihypertensive drug licensed for the treatment of mild to moderate essential hypertension. It may have a role when thiazides, beta-blockers, ACE inhibitors, and calcium channel blockers are not appropriate or have failed to control blood pressure. In addition, it demonstrates favourable effects on parameters of the insulin resistance syndrome, apparently independent of blood pressure reduction. It is also a growth hormone releaser. It is manufactured by Solvay Pharmaceuticals under the brand name Physiotens & Moxon.

<span class="mw-page-title-main">Bisoprolol</span> Beta-1 selective adrenenergic blocker medication used to treat cardiovascular diseases

Bisoprolol, sold under the brand name Zebeta among others, is a beta blocker medication used for heart diseases. This includes tachyarrhythmias, high blood pressure, chest pain from not enough blood flow to the heart, and heart failure. It is taken by mouth.

<span class="mw-page-title-main">Acecainide</span> Antiarrythmic drug

Acecainide is an antiarrhythmic drug. Chemically, it is the N-acetylated metabolite of procainamide. It is a Class III antiarrhythmic agent, whereas procainamide is a Class Ia antiarrhythmic drug. It is only partially as active as procainamide; when checking levels, both must be included in the final calculation.

<span class="mw-page-title-main">Ibutilide</span> Chemical compound

Ibutilide is a Class III antiarrhythmic agent that is indicated for acute cardioconversion of atrial fibrillation and atrial flutter of a recent onset to sinus rhythm. It exerts its antiarrhythmic effect by induction of slow inward sodium current, which prolongs action potential and refractory period of myocardial cells. Because of its Class III antiarrhythmic activity, there should not be concomitant administration of Class Ia and Class III agents.

<span class="mw-page-title-main">Ajmaline</span> Chemical compound

Ajmaline is an alkaloid that is classified as a 1-A antiarrhythmic agent. It is often used to induce arrhythmic contraction in patients suspected of having Brugada syndrome. Individuals suffering from Brugada syndrome will be more susceptible to the arrhythmogenic effects of the drug, and this can be observed on an electrocardiogram as an ST elevation.

<span class="mw-page-title-main">Pilsicainide</span> Chemical compound

Pilsicainide (INN) is an antiarrhythmic agent. It is marketed in Japan as サンリズム (Sunrythm). It was developed by Suntory Holdings Limited and first released in 1991. The JAN applies to the hydrochloride salt, pilsicainide hydrochloride.

<span class="mw-page-title-main">Cocaine intoxication</span> Medical condition

Cocaine intoxication refers to the subjective, desired and adverse effects of cocaine on the mind and behavior of users. Both self-induced and involuntary cocaine intoxication have medical and legal implications.

<span class="mw-page-title-main">Celivarone</span> Experimental drug being tested for use in pharmacological antiarrhythmic therapy

Celivarone is an experimental drug being tested for use in pharmacological antiarrhythmic therapy. Cardiac arrhythmia is any abnormality in the electrical activity of the heart. Arrhythmias range from mild to severe, sometimes causing symptoms like palpitations, dizziness, fainting, and even death. They can manifest as slow (bradycardia) or fast (tachycardia) heart rate, and may have a regular or irregular rhythm.

<span class="mw-page-title-main">AH-1058</span> Chemical compound

AH-1058 is a lipophilic antiarrhythmic calcium channel blocker synthesized by the Pharmaceutical Research Laboratories of Ajinomoto Co., Inc in Kawasaki, Japan. It is derived from cyproheptadine, a compound with known antiserotonic, antihistaminic and calcium channel blocking properties. The IUPAC name of AH-1058 is: 4-(5H-dibenzo[a,d]cyclohepten-5-ylidene)-1-[E-3-(3-methoxy-2-nitro) phenyl-2-propenyl]piperidine hydrochloride.

QT prolongation is a measure of delayed ventricular repolarisation, which means the heart muscle takes longer than normal to recharge between beats. It is an electrical disturbance which can be seen on an electrocardiogram (ECG). Excessive QT prolongation can trigger tachycardias such as torsades de pointes (TdP). QT prolongation is an established side effect of antiarrhythmics, but can also be caused by a wide range of non-cardiac medicines, including antibiotics, antihistamines, opioids, and complementary medicines. On an ECG, the QT interval represents the summation of action potentials in cardiac muscle cells, which can be caused by an increase in inward current through sodium or calcium channels, or a decrease in outward current through potassium channels. By binding to and inhibiting the “rapid” delayed rectifier potassium current protein, certain drugs are able to decrease the outward flow of potassium ions and extend the length of phase 3 myocardial repolarization, resulting in QT prolongation.

References

  1. 1 2 3 4 5 Janicki K, Orski J, Kakol J (1995). "[Antiarrhythmic effects of prajmaline (Neo-Gilurythmal) in stable angina pectoris in light of Holter electrocardiographic monitoring]". Przegląd Lekarski (in Polish). 52 (10): 485–491. PMID   8834838.
  2. 1 2 Weirich J, Antoni H (June 1990). "Differential analysis of the frequency-dependent effects of class 1 antiarrhythmic drugs according to periodical ligand binding: implications for antiarrhythmic and proarrhythmic efficacy". Journal of Cardiovascular Pharmacology. 15 (6): 998–1009. doi: 10.1097/00005344-199006000-00019 . PMID   1694924.
  3. 1 2 3 Köppel C, Oberdisse U, Heinemeyer G (1990). "Clinical course and outcome in class IC antiarrhythmic overdose". Clinical Toxicology. 28 (4): 433–44. doi:10.3109/15563659009038586. PMID   2176700.
  4. Milne JR, Hellestrand KJ, Bexton RS, Burnett PJ, Debbas NM, Camm AJ (February 1984). "Class 1 antiarrhythmic drugs--characteristic electrocardiographic differences when assessed by atrial and ventricular pacing". European Heart Journal. 5 (2): 99–107. doi:10.1093/oxfordjournals.eurheartj.a061633. PMID   6723689.
  5. Hinse C, Stöckigt J (July 2000). "The structure of the ring-opened N beta-propyl-ajmaline (Neo-Gilurytmal) at physiological pH is obviously responsible for its better absorption and bioavailability when compared with ajmaline (Gilurytmal)". Die Pharmazie. 55 (7): 531–2. PMID   10944783.
  6. 1 2 Langenfeld H, Weirich J, Köhler C, Kochsiek K (February 1990). "Comparative analysis of the action of class I antiarrhythmic drugs (lidocaine, quinidine, and prajmaline) in rabbit atrial and ventricular myocardium". Journal of Cardiovascular Pharmacology. 15 (2): 338–45. doi: 10.1097/00005344-199002000-00023 . PMID   1689432.
  7. 1 2 Langenfeld H, Köhler C, Weirich J, Kirstein M, Kochsiek K (November 1992). "Reverse use dependence of antiarrhythmic class Ia, Ib, and Ic: effects of drugs on the action potential duration?". Pacing and Clinical Electrophysiology. 15 (11 Pt 2): 2097–102. doi:10.1111/j.1540-8159.1992.tb03028.x. PMID   1279606.
  8. 1 2 3 4 5 6 Sowton E, Sullivan ID, Crick JC (1984). "Acute haemodynamic effects of ajmaline and prajmaline in patients with coronary heart disease". European Journal of Clinical Pharmacology. 26 (2): 147–50. doi:10.1007/bf00630278. PMID   6723753.
  9. 1 2 3 4 Handler CE, Kritikos A, Sullivan ID, Charalambakis A, Sowton E (1985). "Effects of oral prajmaline bitartrate on exercise test responses in patients with coronary artery disease". European Journal of Clinical Pharmacology. 28 (4): 371–4. doi:10.1007/bf00544352. PMID   4029242.
  10. 1 2 Stys PK (May 1995). "Protective effects of antiarrhythmic agents against anoxic injury in CNS white matter". Journal of Cerebral Blood Flow and Metabolism. 15 (3): 425–32. doi: 10.1038/jcbfm.1995.53 . PMID   7714000.
  11. 1 2 Malek SA, Adorante JS, Stys PK (March 2005). "Differential effects of Na-K-ATPase pump inhibition, chemical anoxia, and glycolytic blockade on membrane potential of rat optic nerve". Brain Research. 1037 (1–2): 171–9. doi:10.1016/j.brainres.2005.01.003. PMID   15777766.