Esmolol

Last updated
Esmolol
Esmolol structure.svg
Clinical data
Trade names Brevibloc
AHFS/Drugs.com Monograph
Pregnancy
category
  • AU:C
Routes of
administration
Intravenous
ATC code
Legal status
Legal status
Pharmacokinetic data
Protein binding 60%
Metabolism Red blood cell (erythrocytic)
Elimination half-life 9 minutes
Excretion Kidney
Identifiers
  • methyl (RS)-3-{4-[2-hydroxy-3-(propan-2-ylamino)propoxy]phenyl}propanoate
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
Formula C16H25NO4
Molar mass 295.379 g·mol−1
3D model (JSmol)
  • O=C(OC)CCc1ccc(OCC(O)CNC(C)C)cc1
  • InChI=1S/C16H25NO4/c1-12(2)17-10-14(18)11-21-15-7-4-13(5-8-15)6-9-16(19)20-3/h4-5,7-8,12,14,17-18H,6,9-11H2,1-3H3 Yes check.svgY
  • Key:AQNDDEOPVVGCPG-UHFFFAOYSA-N Yes check.svgY
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Esmolol, sold under the brand name Brevibloc, is a cardio selective beta1 receptor blocker with rapid onset, [3] a very short duration of action, and no significant intrinsic sympathomimetic or membrane stabilising activity at therapeutic dosages.

Contents

It is a class II antiarrhythmic. [4] Esmolol decreases the force and rate of heart contractions by blocking beta-adrenergic receptors of the sympathetic nervous system, which are found in the heart and other organs of the body. Esmolol prevents the action of two naturally occurring substances: epinephrine and norepinephrine. [5]

It was patented in 1980 and approved for medical use in 1987. [6]

Medical uses

To terminate supraventricular tachycardia,

Episodic atrial fibrillation or flutter,

Arrhythmia during anaesthesia,

To reduce HR and BP during and after cardiac surgery, and

In early treatment of myocardial infarction.

Esmolol is also used in blunting the hemodynamic response to laryngoscopy and intubation. [7]

Pharmacology

Pharmacodynamics

Esmolol is a beta blocker, or an antagonist of the β-adrenergic receptors. [8] It is selective for the β1-adrenergic receptor and has no intrinsic sympathomimetic activity. [8]

Pharmacokinetics

Esmolol is considered a soft drug, [9] one that is rapidly metabolized to an inactive form. Esmolol is rapidly metabolized by hydrolysis of the ester linkage, chiefly by the esterases in the cytosol of red blood cells and not by plasma cholinesterases or red cell membrane acetylcholinesterase. Total body clearance in man was found to be about 20 L/kg/hr, which is greater than cardiac output; thus the metabolism of esmolol is not limited by the rate of blood flow to metabolizing tissues such as the liver or affected by hepatic or renal blood flow. Esmolol's short duration of action is based on the ester-methyl side chain which allows for quick hydrolysis. Esmolol's structure is reflected in its name, es-molol as in ester-methyl. Plasma cholinesterases and red cell membrane acetylcholinesterase do not have any action. This metabolism results in the formation of a free acid and methanol. The amount of methanol produced is similar to endogenous methanol production. Esmolol has a rapid distribution half-life of about two minutes and an elimination half-life of about nine minutes.[ citation needed ]

Esmolol is classified as a beta blocker with low lipophilicity and hence lower potential for crossing the blood–brain barrier. [8] This in turn may result in fewer effects in the central nervous system as well as a lower risk of neuropsychiatric side effects. [8]

Related Research Articles

<span class="mw-page-title-main">Suxamethonium chloride</span> Chemical compound

Suxamethonium chloride, also known as suxamethonium or succinylcholine, or simply sux by medical abbreviation, is a medication used to cause short-term paralysis as part of general anesthesia. This is done to help with tracheal intubation or electroconvulsive therapy. It is administered by injection, either into a vein or into a muscle. When used in a vein, onset of action is generally within one minute and effects last for up to 10 minutes.

<span class="mw-page-title-main">Beta blocker</span> Class of medications used to manage abnormal heart rhythms

Beta blockers, also spelled β-blockers, are a class of medications that are predominantly used to manage abnormal heart rhythms (arrhythmia), and to protect the heart from a second heart attack after a first heart attack. They are also widely used to treat high blood pressure, although they are no longer the first choice for initial treatment of most patients.


Antiarrhythmic agents, also known as cardiac dysrhythmia medications, are a group of pharmaceuticals that are used to suppress abnormally fast rhythms (tachycardias), such as atrial fibrillation, supraventricular tachycardia and ventricular tachycardia.

Atenolol is a beta blocker medication primarily used to treat high blood pressure and heart-associated chest pain. Atenolol, however, does not seem to improve mortality in those with high blood pressure. Other uses include the prevention of migraines and treatment of certain irregular heart beats. It is taken orally or by intravenous injection. It can also be used with other blood pressure medications.

A parasympathomimetic drug, sometimes called a cholinomimetic drug or cholinergic receptor stimulating agent, is a substance that stimulates the parasympathetic nervous system (PSNS). These chemicals are also called cholinergic drugs because acetylcholine (ACh) is the neurotransmitter used by the PSNS. Chemicals in this family can act either directly by stimulating the nicotinic or muscarinic receptors, or indirectly by inhibiting cholinesterase, promoting acetylcholine release, or other mechanisms. Common uses of parasympathomimetics include glaucoma, Sjögren syndrome and underactive bladder.

<span class="mw-page-title-main">Metoprolol</span> Medication of the selective β1 receptor blocker type

Metoprolol, sold under the brand name Lopressor among others, is a medication used to treat high blood pressure, chest pain due to poor blood flow to the heart, and a number of conditions involving an abnormally fast heart rate. It is also used to prevent further heart problems after myocardial infarction and to prevent headaches in those with migraines. It is a selective β1 receptor blocker medication. It is taken by mouth or is given intravenously.

<span class="mw-page-title-main">Sotalol</span> Medication

Sotalol, sold under the brand name Betapace among others, is a medication used to treat and prevent abnormal heart rhythms. Evidence does not support a decreased risk of death with long term use. It is taken by mouth or given by injection into a vein.

<span class="mw-page-title-main">Sympathomimetic drug</span> Substance that mimics effects of catecholamines

Sympathomimetic drugs are stimulant compounds which mimic the effects of endogenous agonists of the sympathetic nervous system. Examples of sympathomimetic effects include increases in heart rate, force of cardiac contraction, and blood pressure. The primary endogenous agonists of the sympathetic nervous system are the catecholamines, which function as both neurotransmitters and hormones. Sympathomimetic drugs are used to treat cardiac arrest and low blood pressure, or even delay premature labor, among other things.

In anaesthesia and advanced airway management, rapid sequence induction (RSI) – also referred to as rapid sequence intubation or as rapid sequence induction and intubation (RSII) or as crash induction – is a special process for endotracheal intubation that is used where the patient is at a high risk of pulmonary aspiration. It differs from other techniques for inducing general anesthesia in that several extra precautions are taken to minimize the time between giving the induction drugs and securing the tube, during which period the patient's airway is essentially unprotected.

<span class="mw-page-title-main">Pindolol</span> Chemical compound

Pindolol, sold under the brand name Visken among others, is a nonselective beta blocker which is used in the treatment of hypertension. It is also an antagonist of the serotonin 5-HT1A receptor, preferentially blocking inhibitory 5-HT1A autoreceptors, and has been researched as an add-on therapy to selective serotonin reuptake inhibitors (SSRIs) in the treatment of depression.

<span class="mw-page-title-main">Labetalol</span> Medication used to treat high blood pressure

Labetalol is a medication used to treat high blood pressure and in long term management of angina. This includes essential hypertension, hypertensive emergencies, and hypertension of pregnancy. In essential hypertension it is generally less preferred than a number of other blood pressure medications. It can be given by mouth or by injection into a vein.

<span class="mw-page-title-main">Penbutolol</span> Chemical compound

Penbutolol is a medication in the class of beta blockers, used in the treatment of high blood pressure. Penbutolol is able to bind to both beta-1 adrenergic receptors and beta-2 adrenergic receptors, thus making it a non-selective β blocker. Penbutolol is a sympathomimetic drug with properties allowing it to act as a partial agonist at β adrenergic receptors.

<span class="mw-page-title-main">Nebivolol</span> Chemical compound

Nebivolol is a beta blocker used to treat high blood pressure and heart failure. As with other β-blockers, it is generally a less preferred treatment for high blood pressure. It may be used by itself or with other blood pressure medication. It is taken by mouth.

<span class="mw-page-title-main">Carteolol</span> Chemical compound

Carteolol is a non-selective beta blocker used to treat glaucoma. It is administered in the form of eye drops.

<span class="mw-page-title-main">Levobunolol</span> Chemical compound

Levobunolol is a non-selective beta blocker. It is used topically in the form of eye drops to manage ocular hypertension and open-angle glaucoma.

<span class="mw-page-title-main">Adrenergic antagonist</span>

An adrenergic antagonist is a drug that inhibits the function of adrenergic receptors. There are five adrenergic receptors, which are divided into two groups. The first group of receptors are the beta (β) adrenergic receptors. There are β1, β2, and β3 receptors. The second group contains the alpha (α) adrenoreceptors. There are only α1 and α2 receptors. Adrenergic receptors are located near the heart, kidneys, lungs, and gastrointestinal tract. There are also α-adreno receptors that are located on vascular smooth muscle.

A sympatholytic (sympathoplegic) drug is a medication that opposes the downstream effects of postganglionic nerve firing in effector organs innervated by the sympathetic nervous system (SNS). They are indicated for various functions; for example, they may be used as antihypertensives. They are also used to treat anxiety, such as generalized anxiety disorder, panic disorder and PTSD. In some cases, such as with Guanfacine, they have also shown to be beneficial in the treatment of ADHD.

<span class="mw-page-title-main">Landiolol</span> Chemical compound

Landiolol (INN) is an ultra short-acting, β1-superselective intravenous adrenergic antagonist, which decreases the heart rate effectively with less negative effect on blood pressure or myocardial contractility. In comparison to other beta blockers, landiolol has the shortest elimination half-life, ultra-rapid onset of effect, and predictable effectiveness with inactive metabolites. The pure S-enantiomer structure of landiolol is believed to develop less hypotensive side effects in comparison to other β-blockers. This has a positive impact on the treatment of patients when reduction of heart rate without decrease in arterial blood pressure is desired. Landiolol was developed by modifying the chemical structure of esmolol to produce a compound with a higher rate of cardioselectivity and a greater potency without increasing its duration of action. It is sold as landiolol hydrochloride. Based on its positive benefit risk profile, landiolol has been granted the marketing authorization and introduced to the European markets under the brand names Rapibloc, Raploc, Runrapiq, Landibloc mid 2016. Landiolol is available in Japan under the brand names Onoact (50 mg) and Corbeta.

Peripherally selective drugs have their primary mechanism of action outside of the central nervous system (CNS), usually because they are excluded from the CNS by the blood–brain barrier. By being excluded from the CNS, drugs may act on the rest of the body without producing side-effects related to their effects on the brain or spinal cord. For example, most opioids cause sedation when given at a sufficiently high dose, but peripherally selective opioids can act on the rest of the body without entering the brain and are less likely to cause sedation. These peripherally selective opioids can be used as antidiarrheals, for instance loperamide (Imodium).

Autonomic drugs can either inhibit or enhance the functions of the parasympathetic and sympathetic nervous systems. This type of drug can be used to treat a wide range of diseases, such as glaucoma, asthma, urinary, gastrointestinal and cardiopulmonary disorders.

References

  1. "Brevibloc esmolol hydrochloride 2.5 g powder for injection for infusion vial (310943)". Therapeutic Goods Administration (TGA). 26 May 2022. Retrieved 29 April 2023.
  2. "Esmolol Juno (Juno Pharmaceuticals Pty Ltd)". Therapeutic Goods Administration (TGA). 13 January 2023. Archived from the original on 18 March 2023. Retrieved 29 April 2023.
  3. Deng CY, Lin SG, Zhang WC, Kuang SJ, Qian WM, Wu SL, et al. (December 2006). "Esmolol inhibits Na+ current in rat ventricular myocytes". Methods and Findings in Experimental and Clinical Pharmacology. 28 (10): 697–702. doi:10.1358/mf.2006.28.10.1037498. PMID   17235414. Archived from the original on 2019-12-10. Retrieved 2008-07-27.
  4. Jaillon P, Drici M (December 1989). "Recent antiarrhythmic drugs". The American Journal of Cardiology. 64 (20): 65J–69J. doi:10.1016/0002-9149(89)91203-4. PMID   2688391.
  5. Tripathi KD. "Antiadrenergic Drugs and Drugs for Glaucoma". Essentials of Medical Pharmacology (7th ed.). p. 149.
  6. Fischer J, Ganellin CR (2006). Analogue-based Drug Discovery. John Wiley & Sons. p. 462. ISBN   978-3-527-60749-5.
  7. Sharma S, Suthar OP, Tak ML, Thanvi A, Paliwal N, Karnawat R (2018). "Comparison of Esmolol and Dexmedetomidine for Suppression of Hemodynamic Response to Laryngoscopy and Endotracheal Intubation in Adult Patients Undergoing Elective General Surgery: A Prospective, Randomized Controlled Double-blinded Study". Anesthesia: Essays and Researches. 12 (1): 262–266. doi: 10.4103/aer.AER_226_17 . PMC   5872877 . PMID   29628593.
  8. 1 2 3 4 Cojocariu SA, Maștaleru A, Sascău RA, Stătescu C, Mitu F, Leon-Constantin MM (February 2021). "Neuropsychiatric Consequences of Lipophilic Beta-Blockers". Medicina (Kaunas). 57 (2): 155. doi: 10.3390/medicina57020155 . PMC   7914867 . PMID   33572109.
  9. Bodor N, Buchwald P (2000). "Soft drug design: General principles and recent applications". Medicinal Research Reviews. 20 (1): 58–101. doi:10.1002/(SICI)1098-1128(200001)20:1<58::AID-MED3>3.0.CO;2-X. PMID   10608921. S2CID   25119421.