Clinical data | |
---|---|
Trade names | Zanidip, Leridip |
AHFS/Drugs.com | UK Drug Information |
Pregnancy category |
|
Routes of administration | Oral |
ATC code | |
Legal status | |
Legal status |
|
Pharmacokinetic data | |
Bioavailability | ~10% (due to first-pass effect) |
Protein binding | >98% |
Metabolism | Mainly CYP3A4 |
Elimination half-life | 8–10 hours |
Duration of action | ≥ 24 hours |
Excretion | Urine (50%) |
Identifiers | |
| |
CAS Number | |
PubChem CID | |
DrugBank | |
ChemSpider | |
UNII | |
KEGG | |
ChEMBL | |
CompTox Dashboard (EPA) | |
ECHA InfoCard | 100.235.079 |
Chemical and physical data | |
Formula | C36H41N3O6 |
Molar mass | 611.739 g·mol−1 |
3D model (JSmol) | |
| |
| |
(verify) |
Lercanidipine (trade name Zanidip, among others) is an antihypertensive (blood pressure lowering) drug. It belongs to the dihydropyridine class of calcium channel blockers, which work by relaxing and opening the blood vessels allowing the blood to circulate more freely around the body. This lowers the blood pressure and allows the heart to work more efficiently. [1]
The drug acts more slowly than older dihydropyridines.[ citation needed ] It probably has fewer adverse effects, but a comparatively high potential for drug interactions.
It was patented in 1984 and first approved for medical use in 1997. [2] The US FDA refused to approve the drug, and lercanidipine is not marketed in USA. [3]
Lercanidipine is used for the treatment of essential hypertension (high blood pressure). [4] [5]
Lercanidipine seems to be a good agent in treating hypertensive patients that also have kidney issues. [6]
Like other dihydropyridines, lercanidipine is contraindicated in unstable angina pectoris, uncontrolled cardiac failure, shortly after a myocardial infarction, and in patients with left ventricular outflow tract obstruction. It is also contraindicated during pregnancy and in women who may become pregnant, because data regarding safety for the unborn are lacking, as well as in patients with severe liver and renal impairment. [4] [5]
The drug must not be combined with strong inhibitors of the liver enzyme CYP3A4 or with the immunosuppressant drug ciclosporin. [4] [5]
Lercanidipine is generally well tolerated; no single adverse effect has been observed in more than 1% of patients treated with this drug. Typical side effects are similar to those of other drugs of this class and include headache, dizziness, tachycardia (fast heartbeat), palpitations, flush, and oedema. Hypersensitivity reactions occur in less than one patient in 10,000. [4] [5]
Oedemas are significantly less common under lercanidipine when compared to first-generation dihydropyridines such as nifedipine. For other side effects, data are inconclusive: A study comparing lercanidipine to first-generation drugs found no difference in the frequency of headache and flush, [7] but switching from amlodipine, felodipine or nitrendipine (all at least second generation) to lercanidipine significantly decreased side effects in another study. [5]
Overdosing of up to 80 times the usual therapeutic dose has been described. Expected symptoms include severe hypotension (low blood pressure) and reflex tachycardia. Bradycardia (slow heartbeat) can also occur due to blockage of calcium channels in the atrioventricular node of the heart. There is no treatment besides monitoring blood pressure and heart function. Dialysis is likely ineffective because most of the lercanidipine is bound to blood plasma proteins and lipid membranes of cells. [4]
The substance is metabolised by the liver enzyme CYP3A4. In a study, the strong CYP3A4 inhibitor ketoconazole increased the maximal blood plasma concentrations of lercanidipine by a factor of eight, and the area under the curve by a factor of 15. In another study, ciclosporin increased lercanidipine plasma levels threefold when given at the same time. Other inhibitors of this enzyme, such as itraconazole, erythromycin, and grapefruit juice, are also expected to increase plasma concentrations and thus amplify the antihypertensive effect. [4] [5] [8] Conversely, CYP3A4 inductors such as carbamazepine, rifampicin, and St John's wort probably lower plasma levels and effectiveness of lercanidipine. [5] [8] By comparison, amlodipine has a lower potential for CYP3A4 mediated interactions. [4] [9]
Lercanidipine increases plasma levels of ciclosporin and digoxin. [4] [5]
Like other dihydropyridine class calcium channel blockers, lercanidipine blocks L-type calcium channels in the smooth muscle cells of blood vessels, relaxing them and thus lowering blood pressure. In contrast to the non-dihydropyridine calcium channel blockers verapamil and diltiazem, it does not significantly act on calcium channels in the atrioventricular node, and therefore does not decrease heart rate, in usual therapeutic doses. [5]
Lercanidipine is slowly but completely absorbed from the gut. It has a total bioavailability of 10% due to an extensive first-pass effect, or up to 40% if taken after a fatty meal. Highest blood plasma levels are reached after 1.5 to 3 hours. The substance is quickly distributed into the tissues and bound to lipid membranes, where it forms a depot. The circulating fraction is almost completely (>98%) bound to plasma proteins. [4] [5]
It is completely metabolized in the liver, mainly via CYP3A4. Elimination half-life is 8 to 10 hours, and the drug does not accumulate. Because of the depot effect, the antihypertensive action lasts for at least 24 hours. 50% is excreted via the urine. [4] [5]
Lercanidipine is used in form of the hydrochloride, [4] which is a slightly yellow crystalline powder and melts at 197 to 201 °C (387 to 394 °F) in crystal form I or 207 to 211 °C (405 to 412 °F) in crystal form II. [10] It is readily soluble in chloroform and methanol, but practically insoluble in water. [11] This high lipophilicity (compared to older dihydropyridines) is intentional because it causes the substance to bind to lipid membranes, allowing for a longer duration of action. [12]
The lercanidipine molecule has one asymmetric carbon atom. While the S-enantiomer is more effective than the R-enantiomer, marketed formulations contain a 1:1 mixture of both (i.e., the racemate). [5] [13]
Enantiomers of lercanidipine | |
---|---|
(R)-lercanidipin CAS number: 185197-70-0 | (S)-lercanidipin CAS number: 185197-71-1 |
Blood plasma concentrations of lercanidipine can be detected by liquid chromatography–mass spectrometry methods. [14]
Calcium channel blockers (CCB), calcium channel antagonists or calcium antagonists are a group of medications that disrupt the movement of calcium through calcium channels. Calcium channel blockers are used as antihypertensive drugs, i.e., as medications to decrease blood pressure in patients with hypertension. CCBs are particularly effective against large vessel stiffness, one of the common causes of elevated systolic blood pressure in elderly patients. Calcium channel blockers are also frequently used to alter heart rate, to prevent peripheral and cerebral vasospasm, and to reduce chest pain caused by angina pectoris.
Antihypertensives are a class of drugs that are used to treat hypertension. Antihypertensive therapy seeks to prevent the complications of high blood pressure, such as stroke, heart failure, kidney failure and myocardial infarction. Evidence suggests that reduction of the blood pressure by 5 mmHg can decrease the risk of stroke by 34% and of ischaemic heart disease by 21%, and can reduce the likelihood of dementia, heart failure, and mortality from cardiovascular disease. There are many classes of antihypertensives, which lower blood pressure by different means. Among the most important and most widely used medications are thiazide diuretics, calcium channel blockers, ACE inhibitors, angiotensin II receptor antagonists (ARBs), and beta blockers.
Amlodipine, sold under the brand name Norvasc among others, is a calcium channel blocker medication used to treat high blood pressure, coronary artery disease (CAD) and variant angina. It is taken orally.
Atenolol is a beta blocker medication primarily used to treat high blood pressure and heart-associated chest pain. Although used to treat high blood pressure, it does not seem to improve mortality in those with the condition. Other uses include the prevention of migraines and treatment of certain irregular heart beats. It is taken orally or by intravenous injection. It can also be used with other blood pressure medications.
Nifedipine, sold under the brand name Procardia among others, is a calcium channel blocker medication used to manage angina, high blood pressure, Raynaud's phenomenon, and premature labor. It is one of the treatments of choice for Prinzmetal angina. It may be used to treat severe high blood pressure in pregnancy. Its use in preterm labor may allow more time for steroids to improve the baby's lung function and provide time for transfer of the mother to a well qualified medical facility before delivery. It is a calcium channel blocker of the dihydropyridine type. Nifedipine is taken by mouth and comes in fast- and slow-release formulations.
Diltiazem, sold under the brand name Cardizem among others, is a nondihydropyridine calcium channel blocker medication used to treat high blood pressure, angina, and certain heart arrhythmias. It may also be used in hyperthyroidism if beta blockers cannot be used. It is taken by mouth or given by injection into a vein. When given by injection, effects typically begin within a few minutes and last a few hours.
Indapamide is a thiazide-like diuretic drug used in the treatment of hypertension, as well as decompensated heart failure. Combination preparations with perindopril are available. The thiazide-like diuretics reduce risk of major cardiovascular events and heart failure in hypertensive patients compared with hydrochlorothiazide with a comparable incidence of adverse events. Both thiazide diuretics and thiazide-like diuretics are effective in reducing risk of stroke. Both drug classes appear to have comparable rates of adverse effects as other antihypertensives such as angiotensin II receptor blockers and dihydropyridine calcium channel blockers and lesser prevalence of side-effects when compared to ACE-inhibitors and non-dihydropyridine calcium channel blockers.
Felodipine is a medication of the calcium channel blocker type that is used to treat high blood pressure.
Nimodipine, sold under the brand name Nimotop among others, is a calcium channel blocker used in preventing vasospasm secondary to subarachnoid hemorrhage. It was originally developed within the calcium channel blocker class as it was used for the treatment of high blood pressure, but is not used for this indication.
Nebivolol is a beta blocker used to treat high blood pressure and heart failure. As with other β-blockers, it is generally a less preferred treatment for high blood pressure. It may be used by itself or with other blood pressure medication. It is taken by mouth.
Isradipine is a calcium channel blocker of the dihydropyridine class. It is usually prescribed for the treatment of high blood pressure in order to reduce the risk of stroke and heart attack.
Nisoldipine is a pharmaceutical drug used for the treatment of chronic angina pectoris and hypertension. It is a calcium channel blocker of the dihydropyridine class. It is sold in the United States under the proprietary name Sular. Nisoldipine has tropism for cardiac blood vessels.
Flunarizine, sold under the brand name Sibelium among others, is a drug classified as a calcium antagonist which is used for various indications. It is not available by prescription in the United States or Japan. The drug was discovered at Janssen Pharmaceutica (R14950) in 1968.
Nitrendipine is a dihydropyridine calcium channel blocker. It is used in the treatment of primary (essential) hypertension to decrease blood pressure and can reduce the cardiotoxicity of cocaine.
Clevidipine is a dihydropyridine calcium channel blocker indicated for the reduction of blood pressure when oral therapy is not feasible or not desirable. Clevidipine is used IV only and practitioners titrate this drug to lower blood pressure. It has a half-life of approximately one minute. It is rapidly inactivated by esterases.
Cilnidipine is a calcium channel blocker. Cilnidipine is approved for use in Japan, China, India, Nepal, and Korea for hypertension.
Efonidipine (INN) is a dihydropyridine calcium channel blocker marketed by Shionogi & Co. of Japan. It was launched in 1995, under the brand name Landel (ランデル). The drug blocks both T-type and L-type calcium channels. Drug Controller General of India (DCGI) has approved the use of efonidipine in India. It is launched under the brand name "Efnocar".
Levamlodipine (INN), also known as levoamlodipine or S-amlodipine is a pharmacologically active enantiomer of amlodipine. Amlodipine belongs to the dihydropyridine group of calcium channel blocker used as an antihypertensive and antianginal agent. It was approved by the U.S. FDA in December 2019 and is currently marketed under the brand name Conjupri.
The Antihypertensive and Lipid Lowering Treatment to Prevent Heart Attack Trial, also known as ALLHAT, was a randomized, double-blind, active-controlled study comparing at the same time, four different classes of antihypertensive drugs with the rate of coronary heart disease (CHD) events in ‘high-risk’ people with hypertension. Participants were initially randomised to chlorthalidone (diuretic) versus doxazosin, lisinopril (ACE-inhibitor), and amlodipine.
Cardiovascular agents are drugs used to treat diseases associated with the heart or blood vessels. These medications are available for purchase only with a physician’s prescription. They include, but are not limited to, drugs that target hypertension (antihypertensives), hyperlipidemia (antihyperlipidemics) and blood clotting (blood-thinners) to reduce the risk of cardiovascular diseases.