Levamlodipine

Last updated
Levamlodipine
Levamlodipine.svg
Clinical data
Trade names Conjupri, others
AHFS/Drugs.com Monograph
License data
Routes of
administration
Oral
ATC code
Pharmacokinetic data
Protein binding 93%
Metabolism Liver
Excretion 60% of the metabolites excreted in the urine
Identifiers
  • (S)-3-ethyl 5-methyl 2-[(2-aminoethoxy)methyl]-4-(2-chlorophenyl)-6-methyl-1,4-dihydropyridine-3,5-dicarboxylate
CAS Number
PubChem CID
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula C20H25ClN2O5
Molar mass 408.88 g·mol−1
3D model (JSmol)
  • Clc1ccccc1[C@H]2C(=C(/N/C(=C2/C(=O)OCC)COCCN)C)\C(=O)OC
  • InChI=InChI=1S/C20H25ClN2O5/c1-4-28-20(25)18-15(11-27-10-9-22)23-12(2)16(19(24)26-3)17(18)13-7-5-6-8-14(13)21/h5-8,17,23H,4,9-11,22H2,1-3H3/t17-/m0/s1 Yes check.svgY
  • Key:HTIQEAQVCYTUBX-KRWDZBQOSA-N Yes check.svgY

Levamlodipine (INN), also known as levoamlodipine or S-amlodipine is a pharmacologically active enantiomer of amlodipine. [1] Amlodipine belongs to the dihydropyridine group of calcium channel blocker used as an antihypertensive and antianginal agent. [2] It was approved by the U.S. FDA in December 2019 and is currently marketed under the brand name Conjupri. [3]

Contents

Mechanism of action

Amlodipine blocks the transmembrane influx of calcium into the vascular and cardiac smooth muscles resulting in vasodilation and hence a fall in blood pressure. Levamlodipine is an allosteric modulator and acts on the L-type of calcium channels. [4] [5] Receptor binding studies have shown that out of the two forms only the (S)-enantiomer of amlodipine binds to and blocks L-type calcium channels whereas the (R)-enantiomer has no activity on these channels. [6]

The precise mechanisms by which levamlodipine relieves angina have not been fully explored, but are thought to include the following:

Pharmacokinetics and metabolism

Administration of levamlodipine (2.5 mg) as a single dose gives maximum plasma concentration (Cmax) of 8.3 to 9.3 ng/mL in 2 to 3 hrs (Tmax). It is extensively (about 90%) converted to inactive metabolites via hepatic metabolism with 10% of the parent compound and 60% of the metabolites excreted in the urine. Levamlodipine shows approximately 93% plasma protein binding in hypertensive patients. The mean AUC 0–t value (t = 48 hrs) of levamlodipine tablets (2.5 mg) is 95±14 ng·hr/mL. The plasma elimination half-life of levamlodipine has been found to be 31±13 hrs. [7]

Clinical experience

Various clinical studies have shown that levamlodipine has more selectivity and better efficacy than (R)-amlodipine. In pooled data, from three comparative studies conducted in 200 patients with mild to moderate hypertension, 2.5 mg of levamlodipine was found to be equivalent in its blood pressure lowering efficacy to 5 mg of amlodipine. The average reduction in systolic BP was 19±3 vs 19±4, 20±2 vs 19±3 and 20±2 vs 19±3 mm of Hg recorded in standing, supine and sitting position respectively for levamlodipine compared to racemic amlodipine. The studies also reported a significant reduction in total cholesterol and triglyceride levels with levamlodipine, which was not seen with amlodipine. [8] [9] [10]

Efficacy and safety of levamlodipine (2.5 mg, once daily) has been evaluated in the patients with isolated systolic hypertension (ISH). Levamlodipine effectively reduced the systolic BP (mean reduction 22±14 mm of Hg) in all grades of ISH. After 28 days of the treatment, overall responder rate was 73%. It significantly reduced the systolic and diastolic BP within 4 weeks with a responder rate of 96.5%. [11]

Elderly hypertensives with diabetes mellitus exhibits higher response to levamlodipine therapy than non-diabetic patients. Levamlodipine is an effective switch-over option for the elderly patients who experience oedema and other adverse events with racemic amlodipine. [12]

Safety and tolerability

The use of racemic amlodipine is commonly associated with adverse events like peripheral edema and other side effects like headache, dizziness, flushing and abdominal pain. [13] Controlled clinical trials showed that levamlodipine is rarely associated with these side effects. [14] No controlled clinical study of levamlodipine has been performed in patients with hepatic impairment and renal impairment. Clinical studies in patients with normal liver function have shown that there is no elevation in the hepatic enzymes with the use of levamlodipine. [2] However, caution should be taken while administering levamlodipine to such patients.

In a postmarketing surveillance study, levamlodipine (2.5/5 mg) was found to be well tolerated (n = 1859) in patients with hypertension. Out of 314 patients, who reported peripheral edema with conventional amlodipine were switched over to levamlodipine and edema was resolved in 310 patients (98.72%) at the end of 4 weeks. Only in 4 patients was edema sustained. Only 30 patients (out of 1859) reported side effects. These side effects included vertigo, tachycardia, cough, headache, fever, mild difficulty in breathing and edema. Adverse events were mild in nature and no serious adverse events were reported. [14]

Society and culture

Aside from the U.S., levamlodipine is currently marketed in Brazil under the brand name Novanlo (Biolab Sanus) and in India as Eslo (Zuventus Healthcare Ltd.), Asomex (Emcure Pharmaceutical Ltd.) and Espin (Intas Pharmaceuticals Ltd.). [15] [16]

Related Research Articles

Calcium channel blockers (CCB), calcium channel antagonists or calcium antagonists are a group of medications that disrupt the movement of calcium through calcium channels. Calcium channel blockers are used as antihypertensive drugs, i.e., as medications to decrease blood pressure in patients with hypertension. CCBs are particularly effective against large vessel stiffness, one of the common causes of elevated systolic blood pressure in elderly patients. Calcium channel blockers are also frequently used to alter heart rate, to prevent peripheral and cerebral vasospasm, and to reduce chest pain caused by angina pectoris.

<span class="mw-page-title-main">Verapamil</span> Calcium channel blocker medication

Verapamil, sold under various trade names, is a calcium channel blocker medication used for the treatment of high blood pressure, angina, and supraventricular tachycardia. It may also be used for the prevention of migraines and cluster headaches. It is given by mouth or by injection into a vein.

<span class="mw-page-title-main">Hydrochlorothiazide</span> Diuretic medication

Hydrochlorothiazide is a diuretic medication often used to treat high blood pressure and swelling due to fluid build-up. Other uses include treating diabetes insipidus and renal tubular acidosis and to decrease the risk of kidney stones in those with a high calcium level in the urine. Hydrochlorothiazide shows greater effect on systolic blood pressure than diastolic one which can reach 4 mmHg to 6 mmHg pressure reduction. Hydrochlorothiazide is less effective than chlortalidone for prevention of heart attack or stroke. Hydrochlorothiazide is taken by mouth and may be combined with other blood pressure medications as a single pill to increase effectiveness.

Antihypertensives are a class of drugs that are used to treat hypertension. Antihypertensive therapy seeks to prevent the complications of high blood pressure, such as stroke, heart failure, kidney failure and myocardial infarction. Evidence suggests that reduction of the blood pressure by 5 mmHg can decrease the risk of stroke by 34% and of ischaemic heart disease by 21%, and can reduce the likelihood of dementia, heart failure, and mortality from cardiovascular disease. There are many classes of antihypertensives, which lower blood pressure by different means. Among the most important and most widely used medications are thiazide diuretics, calcium channel blockers, ACE inhibitors, angiotensin II receptor antagonists (ARBs), and beta blockers.

<span class="mw-page-title-main">Amlodipine</span> Dihydropyridine calcium channel blocker used to treat cardiovascular diseases

Amlodipine, sold under the brand name Norvasc among others, is a calcium channel blocker medication used to treat high blood pressure and coronary artery disease. It is taken by mouth.

<span class="mw-page-title-main">Nifedipine</span> Calcium channel blocker medication

Nifedipine, sold under the brand name Adalat and Procardia, among others, is a calcium channel blocker medication used to manage angina, high blood pressure, Raynaud's phenomenon, and premature labor. It is one of the treatments of choice for Prinzmetal angina. It may be used to treat severe high blood pressure in pregnancy. Its use in preterm labor may allow more time for steroids to improve the baby's lung function and provide time for transfer of the mother to a well qualified medical facility before delivery. It is a calcium channel blocker of the dihydropyridine type. Nifedipine is taken by mouth and comes in fast- and slow-release formulations.

<span class="mw-page-title-main">Diltiazem</span> Calcium channel blocker medication

Diltiazem, sold under the brand name Cardizem among others, is a calcium channel blocker medication used to treat high blood pressure, angina, and certain heart arrhythmias. It may also be used in hyperthyroidism if beta blockers cannot be used. It is taken by mouth or injection into a vein. When given by injection, effects typically begin within a few minutes and last a few hours.

<span class="mw-page-title-main">Chlortalidone</span> Thiazide-like diuretic drug

Chlortalidone, also known as chlorthalidone, is a thiazide-like diuretic drug used to treat high blood pressure, swelling including that due to heart failure, liver failure, and nephrotic syndrome, diabetes insipidus, and renal tubular acidosis. Because chlortalidone is reliably effective in most patients with high blood pressure, it is considered a preferred initial treatment. It is also used to prevent calcium-based kidney stones. It is taken by mouth. Effects generally begin within three hours and last for up to three days. Long-term treatment with chlortalidone is more effective than hydrochlorothiazide for prevention of heart attack or stroke.

<span class="mw-page-title-main">Bosentan</span> Chemical compound

Bosentan, sold under the brand name Tracleer and Safebo among others, is a dual endothelin receptor antagonist medication used in the treatment of pulmonary artery hypertension (PAH).

<span class="mw-page-title-main">Perindopril</span> High blood pressure medication

Perindopril is a medication used to treat high blood pressure, heart failure, or stable coronary artery disease.

<span class="mw-page-title-main">Nebivolol</span> Chemical compound

Nebivolol is a beta blocker used to treat high blood pressure and heart failure. As with other β-blockers, it is generally a less preferred treatment for high blood pressure. It may be used by itself or with other blood pressure medication. It is taken by mouth.

<span class="mw-page-title-main">Lercanidipine</span> Chemical compound

Lercanidipine is an antihypertensive drug. It belongs to the dihydropyridine class of calcium channel blockers, which work by relaxing and opening the blood vessels allowing the blood to circulate more freely around the body. This lowers the blood pressure and allows the heart to work more efficiently.

<span class="mw-page-title-main">Isradipine</span> Chemical compound

Isradipine is a calcium channel blocker of the dihydropyridine class. It is usually prescribed for the treatment of high blood pressure in order to reduce the risk of stroke and heart attack.

<span class="mw-page-title-main">Nitrendipine</span> Chemical compound

Nitrendipine is a dihydropyridine calcium channel blocker. It is used in the treatment of primary (essential) hypertension to decrease blood pressure and can reduce the cardiotoxicity of cocaine.

Naproxcinod (nitronaproxen) is a nonsteroidal anti-inflammatory drug (NSAID) developed by the French pharmaceutical company NicOx. It is a derivative of naproxen with a nitroxybutyl ester to allow it to also act as a nitric oxide (NO) donor. This second mechanism of action makes naproxcinod the first in a new class of drugs, the cyclooxygenase inhibiting nitric oxide donators (CINODs), that are hoped to produce similar analgesic efficacy to traditional NSAIDs, but with less gastrointestinal and cardiovascular side effects.

<span class="mw-page-title-main">Clevidipine</span> Chemical compound

Clevidipine is a dihydropyridine calcium channel blocker indicated for the reduction of blood pressure when oral therapy is not feasible or not desirable. Clevidipine is used IV only and practitioners titrate this drug to lower blood pressure. It has a half-life of approximately one minute. It is rapidly inactivated by esterases.

<span class="mw-page-title-main">Cilnidipine</span> Chemical compound

Cilnidipine is a calcium channel blocker. Cilnidipine is approved for use in Japan, China, India, Nepal, and Korea for hypertension.

<span class="mw-page-title-main">Efonidipine</span> Chemical compound

Efonidipine (INN) is a dihydropyridine calcium channel blocker marketed by Shionogi & Co. of Japan. It was launched in 1995, under the brand name Landel (ランデル). The drug blocks both T-type and L-type calcium channels. Drug Controller General of India (DCGI) has approved the use of efonidipine in India. It is launched under the brand name "Efonta" & Efnocar".

<span class="mw-page-title-main">Troxipide</span> Chemical compound

Troxipide is a drug used in the treatment of gastroesophageal reflux disease. Troxipide is a systemic non-antisecretory gastric cytoprotective agent with anti-ulcer, anti-inflammatory and mucus secreting properties irrespective of pH of stomach or duodenum. Troxipide is currently marketed in Japan (Aplace), China (Shuqi), South Korea (Defensa), and India (Troxip). It is used for the management of gastric ulcers, and amelioration of gastric mucosal lesions in acute gastritis and acute exacerbation of chronic gastritis.

<span class="mw-page-title-main">Riociguat</span> Chemical compound

Riociguat, sold under the brand name Adempas, is a medication by Bayer that is a stimulator of soluble guanylate cyclase (sGC). It is used to treat two forms of pulmonary hypertension (PH): chronic thromboembolic pulmonary hypertension (CTEPH) and pulmonary arterial hypertension (PAH). Riociguat constitutes the first drug of the class of sGC stimulators. The drug has a half-life of 12 hours and will decrease dyspnea associated with pulmonary arterial hypertension.

References

  1. Bhandari, P; Shah, Chirag; Surwade, S (2008-01-01), Chirality-Today and Tomorrow's Way of Treatment , retrieved 2021-10-22
  2. 1 2 3 Thacker HP (2007). "S-amlodipine – the 2007 clinical review". J. Indian Med. Assoc. 105 (4): 180–86. PMID   17822186.
  3. url = <https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=212895
  4. Burges RA, Gardiner DG, Gwilt M, Higgins AJ, Blackburn KJ, Campbell SF, Cross PE, Stubbs JK (January 1987). "Calcium channel blocking properties of amlodipine in vascular smooth muscle and cardiac muscle in vitro: evidence for voltage modulation of vascular dihydropyridine receptors". J. Cardiovasc. Pharmacol. 9 (1): 110–9. doi: 10.1097/00005344-198701000-00018 . PMID   2434785. S2CID   40257612.
  5. Goldmann S, Stoltefuss J (December 1991). "1,4-Dihydropyridines: Effects of Chirality and Conformation on the Calcium Antagonist and Calcium Agonist Activities". Angewandte Chemie International Edition in English. 30 (12): 1559–1578. doi:10.1002/anie.199115591.
  6. Goldmann S, Stoltefuss J, Born L (September 1992). "Determination of the absolute configuration of the active amlodipine enantiomer as (−)-S: a correction". Journal of Medicinal Chemistry. 35 (18): 3341–4. doi:10.1021/jm00096a005. PMID   1388206.
  7. Park JY, Kim KA, Park PW, Lee OJ, Ryu JH, Lee GH, Ha MC, Kim JS, Kang SW, Lee KR (November 2006). "Pharmacokinetic and pharmacodynamic characteristics of a new S-amlodipine formulation in healthy Korean male subjects: a randomized, open-label, two-period, comparative, crossover study". Clin Ther. 28 (11): 1837–47. doi:10.1016/j.clinthera.2006.11.008. PMID   17213004.
  8. Hiremath MS, Dighe GD (August 2002). "A Randomized, Double-blind, Double dummy, Multicentric, Parallel Group, Comparative Clinical Trial of S-Amlodipine 2.5 mg vs Amlodipine 5 mg in the Treatment of mild to moderate Hypertension". JAMA-India. 1 (8): 86–92.
  9. "Clinical Trial of S-Amlodipine 2.5 mg versus Amlodipine 5 mg in the Treatment of Hypertension". Indian Journal of Clinical Practice. 13 (11): 49–54. April 2003.
  10. Pathak L, Hiremath, Kerkar PG, Manade VG (March 2004). "Multicentric, clinical trial of S-Amlodipine 2.5 mg versus Amlodipine 5 mg in the treatment of mild to moderate hypertension--a randomized, double-blind clinical trial". J Assoc Physicians India. 52: 197–202. PMID   15636308.
  11. SESA Study group (June 2005). "MICRO-SESA-I – Safety and Efficacy of S(−)-Amlodipine in the treatment of isolated systolic hypertension". Indian Medical Gazette. 139 (6): 243–250.
  12. SESA Study group (August 2005). "MICRO-SESA-II – Safety and Efficacy of S(-) Amlodipine in the Treatment of Hypertension in Elderly Patients". Indian Medical Gazette. 139 (8): 353–358.
  13. Stöppler MC. "Side Effects of Norvasc (Amlodipine Besylate) Drug Center". RxList Inc.
  14. 1 2 SESA Study group (August 2003). "Safety and Efficacy of S-Amlodipine – SESA study". JAMA-India. 2 (8): 87–92.
  15. "Asomex by Emcure" (PDF). Medical Update Newsletter. 20 (1): 1–2. January 2010.
  16. "Zuventus Brands for S- Amlodipine". DrugsUpdate.com.