18-Hydroxy-11-deoxycorticosterone

Last updated
18-Hydroxy-11-deoxycorticosterone
18-Hydroxy-11-deoxycorticosterone.svg
Names
Preferred IUPAC name
(1S,3aS,3bR,9aR,9bS,11aR)-1-(Hydroxyacetyl)-11a-(hydroxymethyl)-9a-methyl-1,2,3,3a,3b,4,5,8,9,9a,9b,10,11,11a-tetradecahydro-7H-cyclopenta[a]phenanthren-7-one
Other names
18,21-dihydroxy-4-pregnene-3,20-dione
Identifiers
3D model (JSmol)
ChemSpider
EC Number
  • 206-834-3
MeSH 18-hydroxydeoxycorticosterone
PubChem CID
  • InChI=1S/C21H30O4/c1-20-8-6-14(24)10-13(20)2-3-15-16(20)7-9-21(12-23)17(15)4-5-18(21)19(25)11-22/h10,15-18,22-23H,2-9,11-12H2,1H3/t15-,16+,17+,18-,20+,21-/m1/s1
    Key: VPJHREHKRNIYDB-TZGXILGRSA-N
  • C[C@]12CCC(=O)C=C1CC[C@@H]3[C@@H]2CC[C@]4([C@H]3CC[C@@H]4C(=O)CO)CO
Properties
C21H30O4
Molar mass 346.5
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

18-Hydroxy-11-deoxycorticosterone (also known as 18-OH-DOC, 18,21-dihydroxyprogesterone, and 18,21-dihydroxypregn-4-ene-3,20-dione) is an endogenous steroid and a mineralocorticoid. It is a hydroxylated metabolite of 11-deoxycorticosterone. [1]

In rats, conversion of 11-deoxycorticosterone into 18-OH-DOC is catalyzed by the CYP11B3 enzyme. [2]

In humans, 18-OH-DOC is a weak mineralocorticoid. [3] It may be increased in 17α-hydroxylase (CYP17A1) deficiency, [4] in aldosterone synthase (CYP11B2) deficiency, [5] in primary aldosteronism, and may also indicate a histologic variant of the aldosteronoma. [4] Excessive secretion of 18-OH-DOC can cause mineralocorticoid excess syndrome, although these cases are very rare. [6]

Related Research Articles

<span class="mw-page-title-main">Adrenal cortex</span> Cortex of the adrenal gland

The adrenal cortex is the outer region and also the largest part of an adrenal gland. It is divided into three separate zones: zona glomerulosa, zona fasciculata and zona reticularis. Each zone is responsible for producing specific hormones. It is also a secondary site of androgen synthesis.

<span class="mw-page-title-main">Aldosterone</span> Mineralocorticoid steroid hormone

Aldosterone is the main mineralocorticoid steroid hormone produced by the zona glomerulosa of the adrenal cortex in the adrenal gland. It is essential for sodium conservation in the kidney, salivary glands, sweat glands, and colon. It plays a central role in the homeostatic regulation of blood pressure, plasma sodium (Na+), and potassium (K+) levels. It does so primarily by acting on the mineralocorticoid receptors in the distal tubules and collecting ducts of the nephron. It influences the reabsorption of sodium and excretion of potassium (from and into the tubular fluids, respectively) of the kidney, thereby indirectly influencing water retention or loss, blood pressure, and blood volume. When dysregulated, aldosterone is pathogenic and contributes to the development and progression of cardiovascular and kidney disease. Aldosterone has exactly the opposite function of the atrial natriuretic hormone secreted by the heart.

Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders characterized by impaired cortisol synthesis. It results from the deficiency of one of the five enzymes required for the synthesis of cortisol in the adrenal cortex. Most of these disorders involve excessive or deficient production of hormones such as glucocorticoids, mineralocorticoids, or sex steroids, and can alter development of primary or secondary sex characteristics in some affected infants, children, or adults. It is one of the most common autosomal recessive disorders in humans.

<span class="mw-page-title-main">Cytochrome P450</span> Class of enzymes

Cytochromes P450 (CYPs) are a superfamily of enzymes containing heme as a cofactor that function as monooxygenases. In mammals, these proteins oxidize steroids, fatty acids, and xenobiotics, and are important for the clearance of various compounds, as well as for hormone synthesis and breakdown. In 1963, Estabrook, Cooper, and Rosenthal described the role of CYP as a catalyst in steroid hormone synthesis and drug metabolism. In plants, these proteins are important for the biosynthesis of defensive compounds, fatty acids, and hormones.

<span class="mw-page-title-main">Congenital adrenal hyperplasia due to 11β-hydroxylase deficiency</span> Medical condition

Congenital adrenal hyperplasia due to 11β-hydroxylase deficiency is a form of congenital adrenal hyperplasia (CAH) which produces a higher than normal amount of androgen, resulting from a defect in the gene encoding the enzyme steroid 11β-hydroxylase (11β-OH) which mediates the final step of cortisol synthesis in the adrenal. 11β-OH CAH results in hypertension due to excessive mineralocorticoid effects. It also causes excessive androgen production both before and after birth and can virilize a genetically female fetus or a child of either sex.

Congenital adrenal hyperplasia due to 17α-hydroxylase deficiency is an uncommon form of congenital adrenal hyperplasia resulting from a defect in the gene CYP17A1, which encodes for the enzyme 17α-hydroxylase. It causes decreased synthesis of cortisol and sex steroids, with resulting increase in mineralocorticoid production. Thus, common symptoms include mild hypocortisolism, ambiguous genitalia in genetic males or failure of the ovaries to function at puberty in genetic females, and hypokalemic hypertension (respectively). However, partial (incomplete) deficiency is notable for having inconsistent symptoms between patients, and affected genetic (XX) females may be wholly asymptomatic except for infertility.

<span class="mw-page-title-main">Congenital adrenal hyperplasia due to 21-hydroxylase deficiency</span> Medical condition

Congenital adrenal hyperplasia due to 21-hydroxylase deficiency, in all its forms, accounts for over 95% of diagnosed cases of congenital adrenal hyperplasia (CAH), and CAH in most contexts refers to 21-hydroxylase deficiency and different mutations related to enzyme impairment have been mapped on protein structure.

<span class="mw-page-title-main">Zona glomerulosa</span> Part of the adrenal gland

The zona glomerulosa of the adrenal gland is the most superficial layer of the adrenal cortex, lying directly beneath the renal capsule. Its cells are ovoid and arranged in clusters or arches.

<span class="mw-page-title-main">Apparent mineralocorticoid excess syndrome</span> Medical condition

Apparent mineralocorticoid excess is an autosomal recessive disorder causing hypertension, hypernatremia and hypokalemia. It results from mutations in the HSD11B2 gene, which encodes the kidney isozyme of 11β-hydroxysteroid dehydrogenase type 2. In an unaffected individual, this isozyme inactivates circulating cortisol to the less active metabolite cortisone. The inactivating mutation leads to elevated local concentrations of cortisol in the aldosterone sensitive tissues like the kidney. Cortisol at high concentrations can cross-react and activate the mineralocorticoid receptor due to the non-selectivity of the receptor, leading to aldosterone-like effects in the kidney. This is what causes the hypokalemia, hypertension, and hypernatremia associated with the syndrome. Patients often present with severe hypertension and end-organ changes associated with it like left ventricular hypertrophy, retinal, renal and neurological vascular changes along with growth retardation and failure to thrive. In serum both aldosterone and renin levels are low.

Pseudohyperaldosteronism is a medical condition which mimics the effects of elevated aldosterone (hyperaldosteronism) by presenting with high blood pressure (hypertension), low blood potassium levels (hypokalemia), metabolic alkalosis, and low levels of plasma renin activity (PRA). However, unlike hyperaldosteronism, this conditions exhibits low or normal levels of aldosterone in the blood. Causes include genetic disorders, acquired conditions, metabolic disorders, and dietary imbalances including excessive consumption of licorice. Confirmatory diagnosis depends on the specific root cause and may involve blood tests, urine tests, or genetic testing; however, all forms of this condition exhibit abnormally low concentrations of both plasma renin activity (PRA) and plasma aldosterone concentration (PAC) which differentiates this group of conditions from other forms of secondary hypertension. Treatment is tailored to the specific cause and focuses on symptom control, blood pressure management, and avoidance of triggers.

<span class="mw-page-title-main">11-Deoxycorticosterone</span> Chemical compound

11-Deoxycorticosterone (DOC), or simply deoxycorticosterone, also known as 21-hydroxyprogesterone, as well as desoxycortone (INN), deoxycortone, and cortexone, is a steroid hormone produced by the adrenal gland that possesses mineralocorticoid activity and acts as a precursor to aldosterone. It is an active (Na+-retaining) mineralocorticoid. As its names indicate, 11-deoxycorticosterone can be understood as the 21-hydroxy-variant of progesterone or as the 11-deoxy-variant of corticosterone.

<span class="mw-page-title-main">Aldosterone synthase</span> Protein-coding gene in the species Homo sapiens

Aldosterone synthase, also called steroid 18-hydroxylase, corticosterone 18-monooxygenase or P450C18, is a steroid hydroxylase cytochrome P450 enzyme involved in the biosynthesis of the mineralocorticoid aldosterone and other steroids. The enzyme catalyzes sequential hydroxylations of the steroid angular methyl group at C18 after initial 11β-hydroxylation. It is encoded by the CYP11B2 gene in humans.

<span class="mw-page-title-main">21-Hydroxylase</span> Human enzyme that hydroxylates steroids

Steroid 21-hydroxylase is an enzyme that hydroxylates steroids at the C21 position and is involved in biosynthesis of aldosterone and cortisol. The enzyme converts progesterone and 17α-hydroxyprogesterone into 11-deoxycorticosterone and 11-deoxycortisol, respectively, within metabolic pathways that ultimately lead to aldosterone and cortisol. Deficiency in the enzyme may cause congenital adrenal hyperplasia.

<span class="mw-page-title-main">Steroid 11β-hydroxylase</span> Protein found in mammals

Steroid 11β-hydroxylase, also known as steroid 11β-monooxygenase, is a steroid hydroxylase found in the zona glomerulosa and zona fasciculata of the adrenal cortex. Named officially the cytochrome P450 11B1, mitochondrial, it is a protein that in humans is encoded by the CYP11B1 gene. The enzyme is involved in the biosynthesis of adrenal corticosteroids by catalyzing the addition of hydroxyl groups during oxidation reactions.

Glucocorticoid remediable aldosteronism also describable as aldosterone synthase hyperactivity, is an autosomal dominant disorder in which the increase in aldosterone secretion produced by ACTH is no longer transient.

<span class="mw-page-title-main">15β-Hydroxycyproterone acetate</span> Chemical compound

15β-Hydroxycyproterone acetate (15β-OH-CPA) is a steroidal antiandrogen and the major metabolite of cyproterone acetate (CPA). It is formed from CPA in the liver by hydroxylation via the cytochrome P450 enzyme CYP3A4. During therapy with CPA, 15β-OH-CPA circulates at concentrations that are approximately twice those of CPA. 15β-OH-CPA has similar or even greater antiandrogen activity compared to CPA. However, it has only about one-tenth of the activity of CPA as a progestogen. 15β-OH-CPA also shows some glucocorticoid activity, similarly to CPA and unesterified cyproterone.

<span class="mw-page-title-main">21-Deoxycortisol</span> Chemical compound

21-Deoxycortisol, also known as 11β,17α-dihydroxyprogesterone or as 11β,17α-dihydroxypregn-4-ene-3,20-dione, is a naturally occurring, endogenous steroid related to cortisol (11β,17α,21-trihydroxyprogesterone) which is formed as a metabolite from 17α-hydroxyprogesterone via 11β-hydroxylase.

<span class="mw-page-title-main">11β-Hydroxyprogesterone</span> Chemical compound

11β-Hydroxyprogesterone (11β-OHP), also known as 21-deoxycorticosterone, as well as 11β-hydroxypregn-4-ene-3,20-dione, is a naturally occurring, endogenous steroid and derivative of progesterone. It is a potent mineralocorticoid. Syntheses of 11β-OHP from progesterone is catalyzed by the steroid 11β-hydroxylase (CYP11B1) enzyme, and, to a lesser extent, by the aldosterone synthase enzyme (CYP11B2).

<span class="mw-page-title-main">16α-Hydroxyprogesterone</span> Chemical compound

16α-Hydroxyprogesterone (16α-OHP), also known as 16α-hydroxypregn-4-ene-3,20-dione, is a minor endogenous progestogen steroid hormone and a metabolite of progesterone that is formed in lower amounts than 17α-hydroxyprogesterone (17α-OHP). It occurs in micromolar concentrations and its physiological relevance hence is questionable. However, it may accumulate in target tissues and could have a physiological role in the reproductive system and mammary gland development as well as the cardiovascular and central nervous systems.

The Cyp11b3 is a rat gene encoding a CYP450 enzyme, which is mainly expressed in neonatal rat adrenals, and also expressed in a small amount in other organs of adult rats, this enzyme mainly catalyzing 11-Deoxycorticosterone (DOC) to 18-Hydroxy-11-deoxycorticosterone (18-OH-DOC). Cyp11b3 gene is also located at Chromosome 7q34, next to rat CYP11B1 and CYP11B2.

References

  1. Fujii S, Momoi K, Okamoto M, Yamano T, Okada T, Terasawa T (June 1984). "18,19-Dihydroxydeoxycorticosterone, a new metabolite produced from 18-hydroxydeoxycorticosterone by cytochrome P-450(11) beta. Chemical synthesis and structural analysis by 1H NMR". Biochemistry. 23 (12): 2558–64. doi:10.1021/bi00307a004. PMID   6466598.
  2. Zhou MY, Gomez-Sanchez EP, Foecking MF, Gomez-Sanchez CE (October 1995). "Cloning and expression of the rat adrenal cytochrome P-450 11B3 (CYP11B3) enzyme cDNA: preferential 18-hydroxylation over 11 beta-hydroxylation of DOC". Molecular and Cellular Endocrinology. 114 (1–2): 137–45. doi:10.1016/0303-7207(95)03653-o. PMID   8674838. S2CID   53252461.
  3. Williams GH, Braley LM, Underwood RH (July 1976). "The regulation of plasma 18-hydroxy 11-deoxycorticosterone in man". The Journal of Clinical Investigation. 58 (1): 221–9. doi:10.1172/JCI108453. PMC   333173 . PMID   180059.
  4. 1 2 Ulick S (November 1976). "Adrenocortical factors in hypertension. I. Significance of 18-hydroxy-11-deoxycorticosterone". The American Journal of Cardiology. 38 (6): 814–24. doi:10.1016/0002-9149(76)90360-x. PMID   187051.
  5. Riepe FG, Krone N, Peter M, Sippell WG, Partsch CJ (March 2003). "Chromatographic system for the simultaneous measurement of plasma 18-hydroxy-11-deoxycorticosterone and 18-hydroxycorticosterone by radioimmunoassay: reference data for neonates and infants and its application in aldosterone-synthase deficiency". Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences. 785 (2): 293–301. doi:10.1016/s1570-0232(02)00921-2. PMID   12554142.
  6. Kawamura M, Owada M, Ino J, Sugawara T, Nakano T, Mochizuki I, Sakuma T, Segawa T, Motegi I, Sasano H (June 2003). "Effect of uni-adrenalectomy on blood pressure in a patient with excessive adrenal 18-hydroxy-11-deoxycorticosterone production bilaterally". Internal Medicine (Tokyo, Japan). 42 (6): 507–12. doi: 10.2169/internalmedicine.42.507 . PMID   12857050.