Names | |
---|---|
IUPAC name 3-Oxoandrost-4-en-17β-yl β-D-glucopyranosiduronic acid | |
Systematic IUPAC name (2S,3S,4S,5R,6R)-3,4,5-Trihydroxy-6-{[(1S,3aS,3bR,9aR,9bS,11aS)-9a,11a-dimethyl-7-oxo-2,3,3a,3b,4,5,7,8,9,9a,9b,10,11,11a-tetradecahydro-1H-cyclopenta[a]phenanthren-1-yl]oxy}oxane-2-carboxylic acid | |
Other names Androst-4-en-17β-ol-3-one 17β-D-glucuronide | |
Identifiers | |
3D model (JSmol) | |
ChEBI | |
ChemSpider | |
ECHA InfoCard | 100.162.205 |
KEGG | |
PubChem CID | |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
C25H36O8 | |
Molar mass | 464.555 g/mol |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Testosterone glucuronide is an endogenous, naturally occurring steroid and minor urinary metabolite of testosterone. [1]
Androsterone, or 3α-hydroxy-5α-androstan-17-one, is an endogenous steroid hormone, neurosteroid, and putative pheromone. It is a weak androgen with a potency that is approximately 1/7 that of testosterone. Androsterone is a metabolite of testosterone and dihydrotestosterone (DHT). In addition, it can be converted back into DHT via 3α-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase, bypassing conventional intermediates such as androstanedione and testosterone, and as such, can be considered to be a metabolic intermediate in its own right.
Deoxyadenosine monophosphate (dAMP), also known as deoxyadenylic acid or deoxyadenylate in its conjugate acid and conjugate base forms, respectively, is a derivative of the common nucleic acid AMP, or adenosine monophosphate, in which the -OH (hydroxyl) group on the 2' carbon on the nucleotide's pentose has been reduced to just a hydrogen atom. Deoxyadenosine monophosphate is abbreviated dAMP. It is a monomer used in DNA.
Prostaglandin H2 is a type of prostaglandin and a precursor for many other biologically significant molecules. It is synthesized from arachidonic acid in a reaction catalyzed by a cyclooxygenase enzyme. The conversion from Arachidonic acid to Prostaglandin H2 is a two step process. First, COX-1 catalyzes the addition of two free oxygens to form the 1,2-Dioxane bridge and a peroxide functional group to form Prostaglandin G2. Second, COX-2 reduces the peroxide functional group to a Secondary alcohol, forming Prostaglandin H2. Other peroxidases like Hydroquinone have been observed to reduce PGG2 to PGH2. PGH2 is unstable at room temperature, with a half life of 90-100 seconds, so it is often converted into a different prostaglandin.
Androstanedione, also known as 5α-androstanedione or as 5α-androstane-3,17-dione, is a naturally occurring androstane (5α-androstane) steroid and an endogenous metabolite of androgens like testosterone, dihydrotestosterone (DHT), dehydroepiandrosterone (DHEA), and androstenedione. It is the C5 epimer of etiocholanedione (5β-androstanedione). Androstanedione is formed from androstenedione by 5α-reductase and from DHT by 17β-hydroxysteroid dehydrogenase. It has some androgenic activity.
3α-Androstanediol glucuronide (3α-ADG) is a metabolite formed from human androgens; compounds involved in the development and maintenance of sexual characteristics. It is formed by the glucuronidation of both dihydrotestosterone and testosterone, and has been proposed as means of measuring androgenic activity.
Edogestrone, or edogesterone, also known as 17α-acetoxy-3,3-ethylenedioxy-6-methylpregn-5-en-20-one, is a steroidal progestin and antiandrogen of the 17α-hydroxyprogesterone group which was synthesized in 1964 but was never marketed. Similarly to the structurally related steroid cyproterone acetate, edogestrone binds directly to the androgen receptor and antagonizes it, displacing androgens like testosterone from the receptor, though not as potently as cyproterone acetate. The drug has also been found to suppress androgen production, likely via progesterone receptor activation-mediated antigonadotropic activity.
Estriol glucuronide (E3G), or oestriol glucuronide, also known as estriol monoglucuronide, as well as estriol 16α-β-D-glucosiduronic acid, is a natural, steroidal estrogen and the glucuronic acid conjugate of estriol. It occurs in high concentrations in the urine of pregnant women as a reversibly formed metabolite of estriol. Estriol glucuronide is a prodrug of estriol, and was the major component of Progynon and Emmenin, estrogenic products manufactured from the urine of pregnant women that were introduced in the 1920s and 1930s and were the first orally active estrogens. Emmenin was succeeded by Premarin, which is sourced from the urine of pregnant mares and was introduced in 1941. Premarin replaced Emmenin due to the fact that it was easier and less expensive to produce.
3α-Etiocholanediol, or simply etiocholanediol, also known as 3α,5β-androstanediol or as etiocholane-3α,17β-diol, is a naturally occurring etiocholane (5β-androstane) steroid and an endogenous metabolite of testosterone. It is formed from 5β-dihydrotestosterone and is further transformed into etiocholanolone.
Estradiol glucuronide, or estradiol 17β-D-glucuronide, is a conjugated metabolite of estradiol. It is formed from estradiol in the liver by UDP-glucuronyltransferase via attachment of glucuronic acid and is eventually excreted in the urine by the kidneys. It has much higher water solubility than does estradiol. Glucuronides are the most abundant estrogen conjugates.
Estrone glucuronide, or estrone-3-D-glucuronide, is a conjugated metabolite of estrone. It is formed from estrone in the liver by UDP-glucuronyltransferase via attachment of glucuronic acid and is eventually excreted in the urine by the kidneys. It has much higher water solubility than does estrone. Glucuronides are the most abundant estrogen conjugates and estrone glucuronide is the dominant metabolite of estradiol.
Estriol sulfate glucuronide, or estriol 3-sulfate 16α-glucuronide, is an endogenous, naturally occurring diconjugated metabolite of estriol. It is generated in the liver from estriol sulfate by UDP-glucuronyltransferase and is eventually excreted in the urine by the kidneys. It occurs in high concentrations during pregnancy along with estriol sulfate and estriol glucuronide, and was a component of the early pharmaceutical estrogens Progynon and Emmenin.
Androsterone glucuronide (ADT-G) is a major circulating and urinary metabolite of testosterone and dihydrotestosterone (DHT). It accounts for 93% of total androgen glucuronides in women. ADT-G is formed from androsterone by UDP-glucuronosyltransferases, with the major enzymes being UGT2B15 and UGT2B17. It is a marker of acne in women while androstanediol glucuronide is a marker of hirsutism in women.
Etiocholanolone glucuronide (ETIO-G) is an endogenous, naturally occurring metabolite of testosterone. It is formed in the liver from etiocholanolone by UDP-glucuronyltransferases. ETIO-G has much higher water solubility than etiocholanolone and is eventually excreted in the urine via the kidneys. Along with androsterone glucuronide, it is one of the major inactive metabolites of testosterone.
Testosterone sulfate is an endogenous, naturally occurring steroid and minor urinary metabolite of testosterone.
11-Dehydrocorticosterone (11-DHC), also known as 11-oxocorticosterone or 17-deoxycortisone, as well as 21-hydroxypregn-4-ene-3,11,20-trione, is a naturally occurring, endogenous corticosteroid related to cortisone and corticosterone. It is a potent mineralocorticoid, with generally greater such activity than that of corticosterone.
Capillin is a naturally occurring organic compound with the chemical formula C
12H
8O. The structure contains acetophenone and a polyyne (pentadiynyl) portion, conjugated together as an ynone.
Androsterone sulfate, also known as 3α-hydroxy-5α-androstan-17-one 3α-sulfate, is an endogenous, naturally occurring steroid and one of the major urinary metabolites of androgens. It is a steroid sulfate which is formed from sulfation of androsterone by the steroid sulfotransferase SULT2A1 and can be desulfated back into androsterone by steroid sulfatase.
Estradiol 3-glucuronide (E2-3G), also known as 17β-estradiol 3-(β-D-glucuronide), is a naturally occurring and endogenous estrogen conjugate. It is specifically the C3 glucuronide conjugate of estradiol, the major estrogen in the body. It is formed from estradiol in the liver by UDP-glucuronosyltransferase via attachment of glucuronic acid and is eventually excreted in urine and bile. Similarly to estrogen sulfates like estrone sulfate, estrogen glucuronides have much higher water solubility than do unconjugated estrogens like estradiol.
An androgen conjugate is a conjugate of an androgen, such as testosterone. They occur naturally in the body as metabolites of androgens. Androgen conjugates include sulfate esters and glucuronide conjugates and are formed by sulfotransferase and glucuronosyltransferase enzymes, respectively. In contrast to androgens, conjugates of androgens do not bind to the androgen receptor and are hormonally inactive. However, androgen conjugates can be converted back into active androgens through enzymes like steroid sulfatase.
Phenoxyacetic acid, POA, is a white solid with the formula of C8H8O3. Although not itself usefully active as an herbicide, it forms the part-structure of many phenoxy herbicide derivatives including MCPA and papaya fermentada2,4-D.