4-Methoxyestriol

Last updated
4-Methoxyestriol
4-methoxyestriol.svg
Names
IUPAC name
4-Methoxyestra-1,3,5(10)-triene-3,16α,17β-triol
Systematic IUPAC name
(1R,2R,3aS,3bR,9bS,11aS)-6-Methoxy-11a-methyl-2,3,3a,3b,4,5,9b,10,11,11a-decahydro-1H-cyclopenta[a]phenanthrene-1,2,7-triol
Other names
4-MeO-E3
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/C19H26O4/c1-19-8-7-11-10-5-6-15(20)17(23-2)13(10)4-3-12(11)14(19)9-16(21)18(19)22/h5-6,11-12,14,16,18,20-22H,3-4,7-9H2,1-2H3/t11-,12-,14+,16-,18+,19+/m1/s1
    Key: MTZUPVFOGAXGJG-JUVWIQMMSA-N
  • C[C@]12CC[C@H]3[C@H]([C@@H]1C[C@H]([C@@H]2O)O)CCC4=C3C=CC(=C4OC)O
Properties
C19H26O4
Molar mass 318.413 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

4-Methoxyestriol (4-MeO-E3) is an endogenous estrogen metabolite. [1] [2] [3] [4] It is the 4-methyl ether of 4-hydroxyestriol and a metabolite of estriol and 4-hydroxyestriol. [1] [2] [3] 4-Methoxyestriol has very low affinities for the estrogen receptors. [4] Its relative binding affinities (RBAs) for estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) are both about 1% of those of estradiol. [4] For comparison, estriol had RBAs of 11% and 35%, respectively. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Estriol</span> Chemical compound

Estriol (E3), also spelled oestriol, is a steroid, a weak estrogen, and a minor female sex hormone. It is one of three major endogenous estrogens, the others being estradiol and estrone. Levels of estriol in women who are not pregnant are almost undetectable. However, during pregnancy, estriol is synthesized in very high quantities by the placenta and is the most produced estrogen in the body by far, although circulating levels of estriol are similar to those of other estrogens due to a relatively high rate of metabolism and excretion. Relative to estradiol, both estriol and estrone have far weaker activity as estrogens.

<span class="mw-page-title-main">Estrogen receptor</span> Proteins activated by the hormone estrogen

Estrogen receptors (ERs) are a group of proteins found inside cells. They are receptors that are activated by the hormone estrogen (17β-estradiol). Two classes of ER exist: nuclear estrogen receptors, which are members of the nuclear receptor family of intracellular receptors, and membrane estrogen receptors (mERs), which are mostly G protein-coupled receptors. This article refers to the former (ER).

<span class="mw-page-title-main">3α-Androstanediol</span> Chemical compound

3α-Androstanediol also known as 5α-androstane-3α,17β-diol and sometimes shortened in the literature to 3α-diol, is an endogenous steroid hormone and neurosteroid and a metabolite of androgens like dihydrotestosterone (DHT).

<span class="mw-page-title-main">16α-Hydroxy-DHEA</span> Chemical compound

16α-Hydroxydehydroepiandrosterone is an endogenous metabolite of dehydroepiandrosterone (DHEA). Both 16α-OH-DHEA and its 3β-sulfate ester, 16α-OH-DHEA-S, are intermediates in the biosynthesis of estriol from dehydroepiandrosterone (DHEA). 16α-OH-DHEA has estrogenic activity.

<span class="mw-page-title-main">Estetrol</span> Chemical compound

Estetrol (E4), or oestetrol, is one of the four natural estrogenic steroid hormones found in humans, along with estrone (E1), estradiol (E2), and estriol (E3). Estetrol is a major estrogen in the body. In contrast to estrone and estradiol, estetrol is a native estrogen of fetal life. Estetrol is produced exclusively by the fetal liver and is found in detectable levels only during pregnancy, with relatively high levels in the fetus and lower levels in the maternal circulation.

<span class="mw-page-title-main">3β-Androstanediol</span> Chemical compound

3β-Androstanediol, also known as 5α-androstane-3β,17β-diol, and sometimes shortened in the literature to 3β-diol, is an endogenous steroid hormone and a metabolite of androgens like dehydroepiandrosterone (DHEA) and dihydrotestosterone (DHT).

<span class="mw-page-title-main">17α-Estradiol</span> Chemical compound

17α-Estradiol is a minor and weak endogenous steroidal estrogen that is related to 17β-estradiol. It is the C17 epimer of estradiol. It has approximately 100-fold lower estrogenic potency than 17β-estradiol. The compound shows preferential affinity for the ERα over the ERβ. Although 17α-estradiol is far weaker than 17β-estradiol as an agonist of the nuclear estrogen receptors, it has been found to bind to and activate the brain-expressed ER-X with a greater potency than that of 17β-estradiol, suggesting that it may be the predominant endogenous ligand for the receptor.

<span class="mw-page-title-main">16α-Iodo-E2</span> Chemical compound

16α-Iodo-E2, or 16α-iodoestradiol, is a synthetic, steroidal, potent estrogen with slight preference for the ERα over the ERβ that is used in scientific research. The KD of 16α-iodo-E2 for the ERα is 0.6 nM and for the ERβ is 0.24 nM, a 4-fold difference in affinity, whereas estradiol is considered to have similar affinity for the two receptor subtypes. Unlike the case of the much weaker estriol (16α-hydroxyestradiol), 16α-iodo-E2 is considered to be equipotent with estradiol in terms of estrogenic activity. Radiolabeled [16α-125I]iodo-E2 has been employed in imaging to study the estrogen receptor.

<span class="mw-page-title-main">2-Hydroxyestradiol</span> Chemical compound

2-Hydroxyestradiol (2-OHE2), also known as estra-1,3,5(10)-triene-2,3,17β-triol, is an endogenous steroid, catechol estrogen, and metabolite of estradiol, as well as a positional isomer of estriol.

<span class="mw-page-title-main">16β,17α-Epiestriol</span> Chemical compound

16β,17α-Epiestriol, or 16,17-epiestriol, also known as 16β-hydroxy-17α-estradiol, as well as estra-1,3,5(10)-triene-3,16β,17α-triol, is a minor and weak endogenous steroidal estrogen that is related to 17α-estradiol and estriol. Along with estriol, 16β,17α-epiestriol has been detected in the urine of women during the late pregnancy stage. It shows preferential affinity for the ERβ over the ERα.

<span class="mw-page-title-main">16α-Hydroxyestrone</span> Chemical compound

16α-Hydroxyestrone (16α-OH-E1), or hydroxyestrone, also known as estra-1,3,5(10)-triene-3,16α-diol-17-one, is an endogenous steroidal estrogen and a major metabolite of estrone, as well as an intermediate in the biosynthesis of estriol. It is a potent estrogen similarly to estrone, and it has been suggested that the ratio of 16α-hydroxyestrone to 2-hydroxyestrone, the latter being much less estrogenic in comparison and even antiestrogenic in the presence of more potent estrogens like estradiol, may be involved in the pathophysiology of breast cancer. Conversely, 16α-hydroxyestrone may help to protect against osteoporosis.

<span class="mw-page-title-main">2-Hydroxyestrone</span> Chemical compound

2-Hydroxyestrone (2-OHE1), also known as estra-1,3,5(10)-trien-2,3-diol-17-one, is an endogenous, naturally occurring catechol estrogen and a major metabolite of estrone and estradiol. It is formed irreversibly from estrone in the liver and to a lesser extent in other tissues via 2-hydroxylation mediated by cytochrome P450 enzymes, mainly the CYP3A and CYP1A subfamilies. 2-OHE1 is the most abundant catechol estrogen in the body.

<span class="mw-page-title-main">2-Methoxyestrone</span> Chemical compound

2-Methoxyestrone (2-ME1) is an endogenous, naturally occurring methoxylated catechol estrogen and metabolite of estrone that is formed by catechol O-methyltransferase via the intermediate 2-hydroxyestrone. Unlike estrone but similarly to 2-hydroxyestrone and 2-methoxyestradiol, 2-methoxyestrone has very low affinity for the estrogen receptor and lacks significant estrogenic activity.

<span class="mw-page-title-main">4-Methoxyestradiol</span> Chemical compound

4-Methoxyestradiol (4-ME2) is an endogenous, naturally occurring methoxylated catechol estrogen and metabolite of estradiol that is formed by catechol O-methyltransferase via the intermediate 4-hydroxyestradiol. It has estrogenic activity similarly to estrone and 4-hydroxyestrone.

<span class="mw-page-title-main">4-Methoxyestrone</span> Chemical compound

4-Methoxyestrone (4-ME1) is an endogenous, naturally occurring methoxylated catechol estrogen and metabolite of estrone that is formed by catechol O-methyltransferase via the intermediate 4-hydroxyestrone. It has estrogenic activity similarly to estrone and 4-hydroxyestrone.

<span class="mw-page-title-main">Hydroxylation of estradiol</span>

The hydroxylation of estradiol is one of the major routes of metabolism of the estrogen steroid hormone estradiol. It is hydroxylated into the catechol estrogens 2-hydroxyestradiol and 4-hydroxyestradiol and into estriol (16α-hydroxyestradiol), reactions which are catalyzed by cytochrome P450 enzymes predominantly in the liver, but also in various other tissues.

<span class="mw-page-title-main">2-Methoxyestriol</span> Chemical compound

2-Methoxyestriol (2-MeO-E3) is an endogenous estrogen metabolite. It is specifically a metabolite of estriol and 2-hydroxyestriol. It has negligible affinity for the estrogen receptors and no estrogenic activity. However, 2-methoxyestriol does have some non-estrogen receptor-mediated cholesterol-lowering effects.

<span class="mw-page-title-main">Estradiol 3-glucuronide 17β-sulfate</span> Chemical compound

Estradiol 3-glucuronide 17β-sulfate (E2-3G-17S) is an endogenous estrogen conjugate and metabolite of estradiol. It is related to estradiol 3-sulfate and estradiol 17β-glucuronide. Estradiol 3-glucuronide 17β-sulfate has 0.0001% of the relative binding affinity of estradiol for the ERα, one of the two estrogen receptors (ERs). It shows less than one million-fold lower potency in activating the estrogen receptors relative to estradiol in vitro.

<span class="mw-page-title-main">11β-Chloromethylestradiol</span> Chemical compound

11β-Chloromethylestradiol is a synthetic steroidal estrogen which was never marketed. It has very high affinity for the estrogen receptor and dissociates from it relatively slowly. It was originally thought that 11β-CME2 might be a covalent ligand of the estrogen receptors, but its binding was subsequently shown to be fully reversible. The relative binding affinity of 11β-CME2 for the estrogen receptors ranges from 230 to 3,320% of that of estradiol depending on the study. 11β-CME2 also has about 14% of the relative binding affinity of estradiol for sex hormone-binding globulin (SHBG). The compound has been developed as a radiolabel for the ERs.

<span class="mw-page-title-main">15α-Hydroxyestradiol</span> Chemical compound

15α-Hydroxyestradiol (15α-OH-E2) is an endogenous estrogen which occurs during pregnancy. It is structurally related to estriol (16α-hydroxyestradiol) and estetrol.

References

  1. 1 2 Gerhardt K, Ludwig-Köhn H, Henning HV, Remberg G, Zeeck A (February 1989). "Identification of oestrogen metabolites in human urine by capillary gas chromatography and mass spectrometry". Biomed. Environ. Mass Spectrom. 18 (2): 87–95. doi:10.1002/bms.1200180202. PMID   2706375.
  2. 1 2 Gaikwad NW (May 2013). "Ultra performance liquid chromatography-tandem mass spectrometry method for profiling of steroid metabolome in human tissue". Anal. Chem. 85 (10): 4951–60. doi:10.1021/ac400016e. PMID   23597399.
  3. 1 2 Fujii Y, Teranishi M, Nakada K, Yamazaki M, Kishida S, Miyabo S (February 1992). "Radioimmunoassay for the determination of 2-methoxyestriol concentration in plasma of pregnant women". Chem. Pharm. Bull. 40 (2): 410–3. doi: 10.1248/cpb.40.410 . PMID   1606638.
  4. 1 2 3 4 Zhu BT, Han GZ, Shim JY, Wen Y, Jiang XR (September 2006). "Quantitative structure-activity relationship of various endogenous estrogen metabolites for human estrogen receptor alpha and beta subtypes: Insights into the structural determinants favoring a differential subtype binding". Endocrinology. 147 (9): 4132–50. doi: 10.1210/en.2006-0113 . PMID   16728493.