MS-377

Last updated
MS-377 [1] [2]
MS-377.svg
Names
IUPAC name
(3R)-1-(4-Chlorophenyl)-3-[[4-(2-methoxyethyl)piperazin-1-yl]methyl]pyrrolidin-2-one
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/C18H26ClN3O2/c1-24-13-12-20-8-10-21(11-9-20)14-15-6-7-22(18(15)23)17-4-2-16(19)3-5-17/h2-5,15H,6-14H2,1H3/t15-/m1/s1
    Key: DKVVPXLIRYCKCS-OAHLLOKOSA-N
  • COCCN1CCN(CC1)C[C@H]2CCN(C2=O)C3=CC=C(C=C3)Cl
Properties
C18H26ClN3O2
Molar mass 351.88 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

MS-377 is a selective antagonist of the sigma-1 receptor. [3] It possesses anti-psychotic properties.

Properties

MS-377 acts selectively at the sigma-1 receptor as an antagonist. It does not act on dopamine or serotonin receptors unlike most anti-psychotics. Tests have shown that MS-377 could displace ligand binding from the sigma-1 receptor, but did this not happen at the sigma-2, 5-HT2 and D2 receptors, suggesting that it is selective for the sigma-1 receptor. [4]

Despite not acting at serotonin and dopamine receptors, it still affects those monoamine systems. It has been shown that MS-377 reduced the release of serotonin and dopamine induced by PCP. [5] It has also been shown to decrease methamphetamine behavioral sensitization, [6] this is also observed with other sigma antagonists. [7]

Related Research Articles

<span class="mw-page-title-main">5-HT receptor</span> Class of transmembrane proteins

5-HT receptors, 5-hydroxytryptamine receptors, or serotonin receptors, are a group of G protein-coupled receptor and ligand-gated ion channels found in the central and peripheral nervous systems. They mediate both excitatory and inhibitory neurotransmission. The serotonin receptors are activated by the neurotransmitter serotonin, which acts as their natural ligand.

Histamine H<sub>3</sub> receptor Mammalian protein found in Homo sapiens

Histamine H3 receptors are expressed in the central nervous system and to a lesser extent the peripheral nervous system, where they act as autoreceptors in presynaptic histaminergic neurons and control histamine turnover by feedback inhibition of histamine synthesis and release. The H3 receptor has also been shown to presynaptically inhibit the release of a number of other neurotransmitters (i.e. it acts as an inhibitory heteroreceptor) including, but probably not limited to dopamine, GABA, acetylcholine, noradrenaline, histamine and serotonin.

Sigma receptors (σ-receptors) are protein cell surface receptors that bind ligands such as 4-PPBP, SA 4503 (cutamesine), ditolylguanidine, dimethyltryptamine, and siramesine. There are two subtypes, sigma-1 receptors (σ1) and sigma-2 receptors (σ2), which are classified as sigma receptors for their pharmacological similarities, even though they are evolutionarily unrelated.

5-HT<sub>2A</sub> receptor Subtype of serotonin receptor

The 5-HT2A receptor is a subtype of the 5-HT2 receptor that belongs to the serotonin receptor family and is a G protein-coupled receptor (GPCR). The 5-HT2A receptor is a cell surface receptor, but has several intracellular locations.

κ-opioid receptor Protein-coding gene in the species Homo sapiens, named for ketazocine

The κ-opioid receptor or kappa opioid receptor, abbreviated KOR or KOP for its ligand ketazocine, is a G protein-coupled receptor that in humans is encoded by the OPRK1 gene. The KOR is coupled to the G protein Gi/G0 and is one of four related receptors that bind opioid-like compounds in the brain and are responsible for mediating the effects of these compounds. These effects include altering nociception, consciousness, motor control, and mood. Dysregulation of this receptor system has been implicated in alcohol and drug addiction.

<span class="mw-page-title-main">(+)-CPCA</span> Stimulant drug

(+)-CPCA is a stimulant drug similar in structure to pethidine and to RTI-31, but nocaine is lacking the two-carbon bridge of RTI-31's tropane skeleton. This compound was first developed as a substitute agent for cocaine.

<span class="mw-page-title-main">Lobeline</span> Chemical compound

Lobeline is a piperidine alkaloid found in a variety of plants, particularly those in the genus Lobelia, including Indian tobacco, Devil's tobacco, great lobelia, Lobelia chinensis, and Hippobroma longiflora. In its pure form, it is a white amorphous powder which is freely soluble in water.

<span class="mw-page-title-main">Mesulergine</span> Chemical compound

Mesulergine (INNTooltip International Nonproprietary Name) (developmental code name CU-32085) is a drug of the ergoline group which was never marketed. It acts on serotonin and dopamine receptors. Specifically, it is an agonist of dopamine D2-like receptors and serotonin 5-HT6 receptors and an antagonist of serotonin 5-HT2A, 5-HT2B, 5-HT2C, and 5-HT7 receptors. It also has affinity for the 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1F, and 5-HT5A receptors. The compound had entered clinical trials for the treatment of Parkinson's disease; however, further development was halted due to adverse histological abnormalities in rats. It was also investigated for the treatment of hyperprolactinemia (high prolactin levels).

5-HT<sub>6</sub> receptor Protein-coding gene in the species Homo sapiens

The 5HT6 receptor is a subtype of 5HT receptor that binds the endogenous neurotransmitter serotonin (5-hydroxytryptamine, 5HT). It is a G protein-coupled receptor (GPCR) that is coupled to Gs and mediates excitatory neurotransmission. HTR6 denotes the human gene encoding for the receptor.

<span class="mw-page-title-main">Nisoxetine</span> Chemical compound

Nisoxetine, originally synthesized in the Lilly research laboratories during the early 1970s, is a potent and selective inhibitor for the reuptake of norepinephrine (noradrenaline) into synapses. It currently has no clinical applications in humans, although it was originally researched as an antidepressant. Nisoxetine is now widely used in scientific research as a standard selective norepinephrine reuptake inhibitor. It has been used to research obesity and energy balance, and exerts some local analgesia effects.

<span class="mw-page-title-main">Amperozide</span> Chemical compound

Amperozide is an atypical antipsychotic of the diphenylbutylpiperazine class which acts as an antagonist at the 5-HT2A receptor. It does not block dopamine receptors as with most antipsychotic drugs, but does inhibit dopamine release, and alters the firing pattern of dopaminergic neurons. It was investigated for the treatment of schizophrenia in humans, but never adopted clinically. Its main use is instead in veterinary medicine, primarily in intensively farmed pigs, for decreasing aggression and stress and thereby increasing feeding and productivity.

<span class="mw-page-title-main">TAN-67</span> Chemical compound

TAN-67 (SB-205,607) is an opioid drug used in scientific research that acts as a potent and selective δ-opioid agonist, selective for the δ1 subtype. It has analgesic properties and induces dopamine release in nucleus accumbens. It also protects both heart and brain tissue from hypoxic tissue damage through multiple mechanisms involving among others an interaction between δ receptors and mitochondrial K(ATP) channels.

<span class="mw-page-title-main">GBR-12935</span> Chemical compound

GBR-12935 is a piperazine derivative which is a potent and selective dopamine reuptake inhibitor. It was originally developed in its 3H radiolabelled form for the purpose of mapping the distribution of dopaminergic neurons in the brain by selective labelling of dopamine transporter proteins. This has led to potential clinical uses in the diagnosis of Parkinson's disease, although selective radioligands such as Ioflupane (123I) are now available for this application. GBR-12935 is now widely used in animal research into Parkinson's disease and the dopamine pathways in the brain.

<span class="mw-page-title-main">BIIE-0246</span> Chemical compound

BIIE-0246 is a drug used in scientific research which acts as a potent and selective antagonist for the Neuropeptide Y receptor Y2. It was one of the first non-peptide Y2-selective antagonists developed, and remains among the most widely used tools for studying this receptor. It has been used to demonstrate a role for the Y2 subtype as a presynaptic autoreceptor limiting further neuropeptide Y release, as well as modulating dopamine and acetylcholine release. It has also been shown to produce several behavioural effects in animals, including reducing alcohol consumption in addicted rats and anxiolytic effects, although while selective Y2 agonists are expected to be useful as anorectics, BIIE-0246 did not appear to increase appetite when administered alone.

<span class="mw-page-title-main">S-15535</span> Chemical compound

S-15535 is a phenylpiperazine drug which is a potent and highly selective 5-HT1A receptor ligand that acts as an agonist and antagonist at the presynaptic and postsynaptic 5-HT1A receptors, respectively. It has anxiolytic properties.

<span class="mw-page-title-main">Osemozotan</span> Pharmaceutical drug

Osemozotan (MKC-242) is a selective 5-HT1A receptor agonist with some functional selectivity, acting as a full agonist at presynaptic and a partial agonist at postsynaptic 5-HT1A receptors. 5-HT1A receptor stimulation influences the release of various neurotransmitters including serotonin, dopamine, norepinephrine, and acetylcholine. 5-HT1A receptors are inhibitory G protein-coupled receptor. Osemozotan has antidepressant, anxiolytic, antiobsessional, serenic, and analgesic effects in animal studies, and is used to investigate the role of 5-HT1A receptors in modulating the release of dopamine and serotonin in the brain, and their involvement in addiction to abused stimulants such as cocaine and methamphetamine.

<span class="mw-page-title-main">5-Benzyloxytryptamine</span> Chemical compound

5-Benzyloxytryptamine (5-BT), is a tryptamine derivative which acts as an agonist at the 5-HT1D, 5-HT2 and 5-HT6 serotonin receptors, and an antagonist of TRPM8.

<span class="mw-page-title-main">SB-206553</span> Chemical compound

SB-206553 is a drug which acts as a mixed antagonist for the 5-HT2B and 5-HT2C serotonin receptors. It has anxiolytic properties in animal studies and interacts with a range of other drugs. It has also been shown to act as a positive allosteric modulator of α7 nicotinic acetylcholine receptors. Modified derivatives of SB-206553 have been used to probe the structure of the 5-HT2B receptor.

<span class="mw-page-title-main">HA-966</span> Chemical compound

HA-966 or (±)-3-amino-1-hydroxy-pyrrolidin-2-one is a molecule used in scientific research as a glycine receptor and NMDA receptor antagonist / low efficacy partial agonist. It has neuroprotective and anticonvulsant, anxiolytic, antinociceptive and sedative / hypnotic effects in animal models. Pilot human clinical trials in the early 1960s showed that HA-966 appeared to benefit patients with tremors of extrapyramidal origin.

<span class="mw-page-title-main">Monoamine activity enhancer</span> Monoamine activity enhancer is a term coined in the academic literature with substantial research.

Monoamine activity enhancers (MAE), also known as catecholaminergic/serotoninergic activity enhancers, are a class neuro-biologically active compounds that enhance the release of monoamines in the nervous system. Monoamine activity enhancers are distinct from monoamine releasing agents in that they do not cause the release of monoamines from synaptic vesicles but rather potentiate impulse-evoked monoamine-release. Monoamine activity enhancers increase the number of monoamines released per electrical impulse received.

References

  1. "MS-377 free base".
  2. "Xj9U35H4R3".
  3. "Drug Information | Therapeutic Target Database". idrblab.net. Retrieved 2024-02-16.
  4. Takahashi, S.; Sonehara, K.; Takagi, K.; Miwa, T.; Horikomi, K.; Mita, N.; Nagase, H.; Iizuka, K.; Sakai, K. (August 1999). "Pharmacological profile of MS-377, a novel antipsychotic agent with selective affinity for sigma receptors". Psychopharmacology. 145 (3): 295–302. doi:10.1007/s002130051061. ISSN   0033-3158. PMID   10494578. S2CID   12904841.
  5. Takahashi, S.; Horikomi, K.; Kato, T. (2001-09-21). "MS-377, a novel selective sigma(1) receptor ligand, reverses phencyclidine-induced release of dopamine and serotonin in rat brain". European Journal of Pharmacology. 427 (3): 211–219. doi:10.1016/s0014-2999(01)01254-7. ISSN   0014-2999. PMID   11567651.
  6. Takahashi, S.; Miwa, T.; Horikomi, K. (2000-07-28). "Involvement of sigma 1 receptors in methamphetamine-induced behavioral sensitization in rats". Neuroscience Letters. 289 (1): 21–24. doi:10.1016/s0304-3940(00)01258-1. ISSN   0304-3940. PMID   10899399. S2CID   54420748.
  7. Ujike, H.; Kanzaki, A.; Okumura, K.; Akiyama, K.; Otsuki, S. (1992). "Sigma (sigma) antagonist BMY 14802 prevents methamphetamine-induced sensitization". Life Sciences. 50 (16): PL129–134. doi:10.1016/0024-3205(92)90466-3. ISSN   0024-3205. PMID   1313134.