4-PPBP

Last updated
4-PPBP
4-phenyl-1-(4-phenylbutyl) piperidine.svg
4-PPBP-3D-balls.png
Names
Preferred IUPAC name
4-Phenyl-1-(4-phenylbutyl)piperidine
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
MeSH 4-phenyl-1-(4-phenylbutyl)piperidine
PubChem CID
UNII
  • InChI=1S/C21H27N/c1-3-9-19(10-4-1)11-7-8-16-22-17-14-21(15-18-22)20-12-5-2-6-13-20/h1-6,9-10,12-13,21H,7-8,11,14-18H2 Yes check.svgY
    Key: HQGDPZPNAXRCSA-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C21H27N/c1-3-9-19(10-4-1)11-7-8-16-22-17-14-21(15-18-22)20-12-5-2-6-13-20/h1-6,9-10,12-13,21H,7-8,11,14-18H2
    Key: HQGDPZPNAXRCSA-UHFFFAOYAV
  • C1CN(CCC1C2=CC=CC=C2)CCCCC3=CC=CC=C3
  • c1ccccc1C3CCN(CCCCc2ccccc2)CC3
Properties
C21H27N
Molar mass 293.446 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

4-PPBP is a neuroprotective cyclic amine which binds to sigma receptors. [1]

4-PPBP decreases neuronal nitric oxide synthase (nNOS) activity and ischemia-evoked nitric oxide (NO) production. 4-PPBP provides neuroprotection; this involves the prevention of ischemia-induced intracellular Ca2+ dysregulation. [2] 4-PPBP protects neurons using a mechanism that activates the transcription factor cyclic adenosine monophosphate response element-binding protein (CREB). Neuroprotection that is associated with 4-PPBP increases Bcl-2 expression; Bcl-2 expression is regulated by CREB. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Phosphodiesterase inhibitor</span> Drug

A phosphodiesterase inhibitor is a drug that blocks one or more of the five subtypes of the enzyme phosphodiesterase (PDE), thereby preventing the inactivation of the intracellular second messengers, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) by the respective PDE subtype(s). The ubiquitous presence of this enzyme means that non-specific inhibitors have a wide range of actions, the actions in the heart, and lungs being some of the first to find a therapeutic use.

<span class="mw-page-title-main">Sevoflurane</span> Inhalational anaesthetic

Sevoflurane, sold under the brand name Sevorane, among others, is a sweet-smelling, nonflammable, highly fluorinated methyl isopropyl ether used as an inhalational anaesthetic for induction and maintenance of general anesthesia. After desflurane, it is the volatile anesthetic with the fastest onset. While its offset may be faster than agents other than desflurane in a few circumstances, its offset is more often similar to that of the much older agent isoflurane. While sevoflurane is only half as soluble as isoflurane in blood, the tissue blood partition coefficients of isoflurane and sevoflurane are quite similar. For example, in the muscle group: isoflurane 2.62 vs. sevoflurane 2.57. In the fat group: isoflurane 52 vs. sevoflurane 50. As a result, the longer the case, the more similar will be the emergence times for sevoflurane and isoflurane.

<span class="mw-page-title-main">Cyclic guanosine monophosphate</span> Chemical compound

Cyclic guanosine monophosphate (cGMP) is a cyclic nucleotide derived from guanosine triphosphate (GTP). cGMP acts as a second messenger much like cyclic AMP. Its most likely mechanism of action is activation of intracellular protein kinases in response to the binding of membrane-impermeable peptide hormones to the external cell surface. Through protein kinases activation, cGMP can relax smooth muscle. cGMP concentration in urine can be measured for kidney function and diabetes detection.

Neurotoxicity is a form of toxicity in which a biological, chemical, or physical agent produces an adverse effect on the structure or function of the central and/or peripheral nervous system. It occurs when exposure to a substance – specifically, a neurotoxin or neurotoxicant– alters the normal activity of the nervous system in such a way as to cause permanent or reversible damage to nervous tissue. This can eventually disrupt or even kill neurons, which are cells that transmit and process signals in the brain and other parts of the nervous system. Neurotoxicity can result from organ transplants, radiation treatment, certain drug therapies, recreational drug use, exposure to heavy metals, bites from certain species of venomous snakes, pesticides, certain industrial cleaning solvents, fuels and certain naturally occurring substances. Symptoms may appear immediately after exposure or be delayed. They may include limb weakness or numbness, loss of memory, vision, and/or intellect, uncontrollable obsessive and/or compulsive behaviors, delusions, headache, cognitive and behavioral problems and sexual dysfunction. Chronic mold exposure in homes can lead to neurotoxicity which may not appear for months to years of exposure. All symptoms listed above are consistent with mold mycotoxin accumulation.

<span class="mw-page-title-main">Guanylate cyclase</span> Lyase enzyme that synthesizes cGMP from GTP

Guanylate cyclase is a lyase enzyme that converts guanosine triphosphate (GTP) to cyclic guanosine monophosphate (cGMP) and pyrophosphate:

<span class="mw-page-title-main">Excitotoxicity</span> Process that kills nerve cells

In excitotoxicity, nerve cells suffer damage or death when the levels of otherwise necessary and safe neurotransmitters such as glutamate become pathologically high, resulting in excessive stimulation of receptors. For example, when glutamate receptors such as the NMDA receptor or AMPA receptor encounter excessive levels of the excitatory neurotransmitter, glutamate, significant neuronal damage might ensue. Excess glutamate allows high levels of calcium ions (Ca2+) to enter the cell. Ca2+ influx into cells activates a number of enzymes, including phospholipases, endonucleases, and proteases such as calpain. These enzymes go on to damage cell structures such as components of the cytoskeleton, membrane, and DNA. In evolved, complex adaptive systems such as biological life it must be understood that mechanisms are rarely, if ever, simplistically direct. For example, NMDA in subtoxic amounts induces neuronal survival of otherwise toxic levels of glutamate.

<span class="mw-page-title-main">Aminophylline</span> Chemical compound

Aminophylline is a compound of the bronchodilator theophylline with ethylenediamine in 2:1 ratio. The ethylenediamine improves solubility, and the aminophylline is usually found as a dihydrate.

Sigma receptors (σ-receptors) are protein cell surface receptors that bind ligands such as 4-PPBP, SA 4503 (cutamesine), ditolylguanidine, dimethyltryptamine, and siramesine. There are two subtypes, sigma-1 receptors (σ1) and sigma-2 receptors (σ2), which are classified as sigma receptors for their pharmacological similarities, even though they are evolutionarily unrelated.

<span class="mw-page-title-main">Islands of Calleja</span> Group of neural granule cells

The islands of Calleja are a group of neural granule cells located within the ventral striatum in the brains of most animals. This region of the brain is part of the limbic system, where it aids in the reinforcing effects of reward-like activities. Within most species, the islands are specifically located within the olfactory tubercle; however, in primates, these islands are located within the nucleus accumbens, the reward center of the brain, since the olfactory tubercle has practically disappeared in the brains of primates. Both of these structures have been implicated in the processing of incentives as well as addictions to drugs. Projections to and from the islands supplement this knowledge with their involvement in the reward pathways for both cocaine and amphetamines.

<span class="mw-page-title-main">GABA receptor agonist</span>

A GABA receptor agonist is a drug that is an agonist for one or more of the GABA receptors, producing typically sedative effects, and may also cause other effects such as anxiolytic, anticonvulsant, and muscle relaxant effects. There are three receptors of the gamma-aminobutyric acid. The two receptors GABA-α and GABA-ρ are ion channels that are permeable to chloride ions which reduces neuronal excitability. The GABA-β receptor belongs to the class of G-Protein coupled receptors that inhibit adenylyl cyclase, therefore leading to decreased cyclic adenosine monophosphate (cAMP). GABA-α and GABA-ρ receptors produce sedative and hypnotic effects and have anti-convulsion properties. GABA-β receptors also produce sedative effects. Furthermore, they lead to changes in gene transcription.

<span class="mw-page-title-main">NOS1</span> Protein-coding gene in the species Homo sapiens

Nitric oxide synthase 1 (neuronal), also known as NOS1, is an enzyme that in humans is encoded by the NOS1 gene.

<span class="mw-page-title-main">DYNLL1</span> Protein-coding gene in humans

Dynein light chain 1, cytoplasmic is a protein that in humans is encoded by the DYNLL1 gene.

<span class="mw-page-title-main">NOS1AP</span> Protein-coding gene in the species Homo sapiens

Nitric oxide synthase 1 adaptor protein (NOS1AP) also known as carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase protein (CAPON) is a protein that in humans is encoded by the NOS1AP gene.

<span class="mw-page-title-main">Brain mitochondrial carrier protein 1</span> Protein-coding gene in the species Homo sapiens

Brain mitochondrial carrier protein 1 is a protein that in humans is encoded by the SLC25A14 gene.

<span class="mw-page-title-main">7-Nitroindazole</span> Chemical compound

7-Nitroindazole, or 7-NI, is a heterocyclic small molecule containing an indazole ring that has been nitrated at the 7 position. Nitroindazole acts as a selective inhibitor for neuronal nitric oxide synthase, a hemoprotein enzyme that, in neuronal tissue, converts arginine to citrulline and nitric oxide (NO). Nitric oxide can diffuse through the plasma membrane into neighbouring cells, allowing cell signalling, so nitroindazole indirectly inhibits this signalling process. Other inhibitors exist such as 3-bromo-7-nitroindazole, which is more potent but less specific, or NPA (N-propyl-L-arginine), which acts on a different site.

<span class="mw-page-title-main">BRL-52537</span> Chemical compound

BRL-52537 is a drug which acts as a potent and highly selective κ-opioid agonist. It has neuroprotective effects in animal studies, and is used for research into potential treatments for stroke and heart attack as well as more general brain research.

Memory allocation is a process that determines which specific synapses and neurons in a neural network will store a given memory. Although multiple neurons can receive a stimulus, only a subset of the neurons will induce the necessary plasticity for memory encoding. The selection of this subset of neurons is termed neuronal allocation. Similarly, multiple synapses can be activated by a given set of inputs, but specific mechanisms determine which synapses actually go on to encode the memory, and this process is referred to as synaptic allocation. Memory allocation was first discovered in the lateral amygdala by Sheena Josselyn and colleagues in Alcino J. Silva's laboratory.

<span class="mw-page-title-main">Purinergic signalling</span> Signalling complex involving purine nucleosides and their receptors

Purinergic signalling is a form of extracellular signalling mediated by purine nucleotides and nucleosides such as adenosine and ATP. It involves the activation of purinergic receptors in the cell and/or in nearby cells, thereby regulating cellular functions.

David S. Bredt is an American molecular neuroscientist.

James Edward Cottrell is the Chair Emeritus, Department of Anesthesiology at SUNY Downstate Medical Center in New York City. He serves as a member of the New York State Board of Regents and is an avid collector of contemporary fine-art.

References

  1. Yang S, Bhardwaj A, Cheng J, Alkayed NJ, Hurn PD, Kirsch JR (May 2007). "Sigma receptor agonists provide neuroprotection in vitro by preserving bcl-2". Anesthesia and Analgesia. 104 (5): 1179–84, tables of contents. doi:10.1213/01.ane.0000260267.71185.73. PMC   2596726 . PMID   17456670.
  2. Yang ZJ, Carter EL, Torbey MT, Martin LJ, Koehler RC (January 2010). "Sigma receptor ligand 4-phenyl-1-(4-phenylbutyl)-piperidine modulates neuronal nitric oxide synthase/postsynaptic density-95 coupling mechanisms and protects against neonatal ischemic degeneration of striatal neurons". Experimental Neurology. 221 (1): 166–74. doi:10.1016/j.expneurol.2009.10.019. PMC   2812675 . PMID   19883643.
  3. Yang S, Alkayed NJ, Hurn PD, Kirsch JR (March 2009). "Cyclic adenosine monophosphate response element-binding protein phosphorylation and neuroprotection by 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP)". Anesthesia and Analgesia. 108 (3): 964–70. doi:10.1213/ane.0b013e318192442c. PMC   2828492 . PMID   19224810.