Recreational use of dextromethorphan

Last updated

Cough medicine containing dextromethorphan in tablet form (15mg) Dextromethorphan Tablet-15.jpg
Cough medicine containing dextromethorphan in tablet form (15mg)

Dextromethorphan, or DXM, a common active ingredient found in many over-the-counter cough suppressant cold medicines, is used as a recreational drug and entheogen for its dissociative effects. [1] Street names include Brownies, Dextro, Drix, Gel, Groove, Lean, Mega-perls, Poor man's ecstasy, Poor man's PCP, Red devils, Robo, Rojo, Rome, Skittles, Sizzurp, Triple Cs, Sky and Velvet. [2]

Contents

It has almost no psychoactive effects at medically recommended doses. However, dextromethorphan has powerful dissociative and euphoric properties when administered in doses well above those considered therapeutic for cough suppression. [1] Recreational use of DXM is sometimes referred to in slang form as "robo-tripping" or "skittling", whose prefix derives from the Robitussin brand name, or "Triple Cs", which derives from the Coricidin brand whose tablets are printed with "CC+C" for "Coricidin Cough and Cold". However, this brand presents additional danger when used at recreational doses due to the presence of chlorpheniramine (antihistamine).

In over-the-counter formulations, DXM is often combined with acetaminophen (paracetamol, APAP) to relieve pain; [3] however, to achieve DXM's dissociative effects, the maximum daily therapeutic dose of 4000 mg of APAP is often exceeded, potentially causing acute or chronic liver failure, making abuse and subsequent tolerance of products which contain both DXM and APAP potentially fatal. [4]

An online essay first published in 1995 entitled "The DXM FAQ" described dextromethorphan's potential for recreational use, and classified its effects into so-called plateaus. [5] Each plateau is categorized depending on how much MG of DXM is ingested, each featuring varying or more intense effects. The defined number of plateaus vary depending on source, but the generally agreed-upon number is 4 or 5. [6]

Owing to its recreational use, [7] many retailers in the US have moved dextromethorphan-containing products behind the counter so that one must ask a pharmacist to receive them or be 18 years (19 in New York and Alabama, 21 in Mississippi) or older to purchase them. [8] Some retailers also give out printed recommendations about the potential for abuse with the purchase of products containing dextromethorphan.

Classification

At high doses, dextromethorphan is classified as a dissociative general anesthetic and hallucinogen, similar to the controlled substances ketamine and phencyclidine (PCP). [9] Also like those drugs, dextromethorphan is an NMDA receptor antagonist. [10] [11] It generally does not produce withdrawal symptoms characteristic of physical dependence-inducing substances, but cases of both psychological dependence and physical dependence have been reported in the past, although physical dependence is usually only seen in cases of heavy abuse. Due to dextromethorphan's selective serotonin reuptake inhibitor-like action, the sudden cessation of recreational dosing in tolerant individuals can result in mental and physical withdrawal symptoms similar to the withdrawal from SSRIs. These withdrawal effects can manifest as psychological effects, including depression, irritability, cravings, and as physical effects, including lethargy, body aches, and a sensation of unpleasant tingling, not unlike a mild "electric shock". [12] [13]

Effects

Dextromethorphan's effects have been divided into four plateaus. [14]

  1. The first plateau (1.5 to 2.5 mg per kg body weight) is described as having euphoria, auditory changes, mild stimulation, and change in perception of gravity.
  2. The second plateau (2.5 to 7.5 mg/kg) causes intense euphoria, vivid imagination, and closed-eye hallucinations.
  3. The third and fourth plateaus (7.5 mg/kg and over) cause profound alterations in consciousness, and users often report out-of-body experiences or temporary psychosis. [15] [16] This results in a sort of flanging (speeding up and/or slowing down) of sensory input, which is another characteristic effect of recreational use.

Also, a marked difference is seen between dextromethorphan hydrobromide, contained in most cough suppressant preparations, and dextromethorphan polistirex, contained in the brand name preparation Delsym. Polistirex is a polymer that is bonded to the dextromethorphan that requires more time for the stomach to digest it, as it requires that an ion exchange reaction take place prior to its dissolution into the blood. Because of this, dextromethorphan polistirex takes considerably longer to absorb, resulting in more gradual and longer lasting effects reminiscent of time-release pills. As a cough suppressant, the polistirex version lasts up to 12 hours. This duration also holds true when used recreationally.

In 1981, a paper by Gosselin estimated that the lethal dose is between 50 and 500 mg/kg. Doses as high as 15–20 mg/kg are taken by some recreational users. A single case study suggests that the antidote to dextromethorphan overdose is naloxone, administered intravenously. [17]

In addition to producing PCP-like mental effects, high doses may cause a false-positive result for PCP and opiates in some drug tests. [9] [18]

Risks associated with use

Dextromethorphan has not been shown to cause vacuolization in animals, also known as Olney's lesions, despite early speculation that it might, due to similarities with ketamine. [19] In rats, [20] oral administration of dextromethorphan did not cause vacuolization in laboratory tests. [21] Oral administration of dextromethorphan repeatedly during adolescence, however, has been shown to impair learning in those rats during adulthood. [22] The occurrence of Olney's lesions in humans, however, has not been proven or disproven.

William E. White, author of the "DXM FAQ", has compiled informal research from correspondence with dextromethorphan users suggesting that heavy abuse may result in various deficits corresponding to the brain areas affected by Olney's lesions; these include loss of episodic memory, decline in ability to learn, abnormalities in some aspects of visual processing, and deficits of abstract language comprehension. [23] In 2004, however, White retracted the article in which he made these claims. [24]

A formal survey of dextromethorphan users [25] showed that more than half of users reported experience of these withdrawal symptoms individually for the first week after long-term/addictive dextromethorphan use: fatigue, apathy, flashbacks, and constipation. Over a quarter reported insomnia, nightmares, anhedonia, impaired memory, attention deficit, and decreased libido. Rarer side effects included panic attacks, impaired learning, tremor, jaundice, urticaria (hives), and myalgia. Medical DXM use has not been shown to cause the above issues. [1]

Other ingredients

Misuse of multisymptom cold medications, rather than use of a cough suppressant whose sole active ingredient is dextromethorphan, carries significant risk of fatality or serious illness. Multisymptom cold medicines contain other active ingredients, such as paracetamol (acetaminophen), which can cause permanent bodily damage such as kidney failure or death if taken in quantities exceeding the recommended dose. Chlorphenamine and phenylephrine may also contribute to the harm. Sorbitol, an artificial sweetener found in many cough syrups containing dextromethorphan, can also have negative side effects, including diarrhea and nausea when taken at recreational dosages of dextromethorphan. [26] [27] [28] Guaifenesin, an expectorant commonly accompanying dextromethorphan in cough preparations, can cause unpleasant symptoms including vomiting, nausea, kidney stones, [29] and headache.

Interactions

Combining dextromethorphan with other substances can compound risks. Central nervous system (CNS) stimulants such as amphetamine and/or cocaine can cause a dangerous rise in blood pressure and heart rate. CNS depressants such as alcohol will have a combined depressant effect, which can cause a decreased respiratory rate. Combining dextromethorphan with other CYP2D6 substrates can cause both drugs to build to dangerous levels in the bloodstream. [30] [31] Combining dextromethorphan with other serotonergic drugs could possibly cause serotonin syndrome, an excess of serotonergic activity in the CNS and peripheral nervous system.

Pharmacology

Dextromethorphan is primarily a sigma receptor agonist and an SNRI, and dextromethorphan's effects as a dissociative hallucinogen may be attributed partially to dextrorphan (DXO), a metabolite produced when dextromethorphan is metabolized by the body. Both dextrorphan and dextromethorphan are NMDA receptor antagonists, [32] alike other dissociative hallucinogens such as ketamine and PCP. Although dextrorphan is more potent than its "parent molecule" dextromethorphan, it likely works in combination with dextromethorphan to produce hallucinogenic effects due to only a small percentage of dextromethorphan being metabolized into dextrorphan. [33]

As NMDA receptor antagonists, dextrorphan and dextromethorphan inhibit the excitatory amino acid and neurotransmitter glutamate in the brain. This can effectively slow, or even shut down certain neural pathways, preventing areas of the brain from communicating with each other. This leaves the user feeling dissociated or disconnected, experienced as brain fog or derealization. [34] [35]

Legality

Antitussive preparations containing dextromethorphan are legal to purchase from pharmacies in most countries, with some exceptions being UAE, France, and Sweden. [36] .[ citation needed ] In Russia, dextromethorphan (commonly sold under the brand names Tussin+ and Glycodin) is a Schedule III controlled substance and is placed in the same list as benzodiazepines and the majority of barbiturates. [37]

China

In December 2021, the National Medical Products Administration reclassified all oral single-component dextromethorphan to prescription drugs due to potential abuse. The authorities also mandated manufacturers to remove statements like "no addiction or tolerance with long-term use" from their instructions. [38] Despite the online sales ban, the drug can still be found on some niche e-commerce platforms in China and Twitter. [39]

In April 2024, the National Medical Products Administration announced that dextromethorphan, compound diphenoxylate tablets, nalfurafine, and lorcaserin are included in the second-class psychotropic drug catalog. The announcement took effect in July. [40] [41] In August, Xi'an police arrested a suspect and seized 23 boxes of dextromethorphan; in October, the Hepu County People's Court sentenced one defendant to 7 months in prison [42] , while the Yanchi County People's Court sentenced a pharmacy owner to 6 months, both for drug trafficking involving dextromethorphan. [43] [44]

Indonesia

After previously being available over the counter, the National Agency of Drug and Food Control of Republic of Indonesia (BPOM-RI) now prohibits single-component dextromethorphan drug sales with or without prescription. Indonesia is the only country in the world that makes single-component dextromethorphan illegal even by prescription [45] and violators may be prosecuted by law. Indonesian National Narcotic Bureau has even threatened to revoke pharmacies' and drug stores' licenses if they still stock dextromethorphan, and will notify the police for criminal prosecution. [46] As a result of this regulation, 130 drugs have been withdrawn from the market, but drugs containing multicomponent dextromethorphan can be sold over the counter. [47] In its official press release, the bureau also stated that dextromethorphan is often used as a substitute for marijuana, amphetamine, and heroin by drug abusers, and its use as an antitussive is less beneficial nowadays. [48]

The Director of Narcotics, Psychotropics, and Addictive Substances Control (NAPZA) BPOM-RI, Dr. Danardi Sosrosumihardjo, SpKJ, explains that dextromethorphan, morphine, and heroin are derived from the same tree, and states the effect of dextromethorphan to be equivalent to 1/100 of morphine and injected heroin. [49] By contrast, the Deputy of Therapeutic Product and NAPZA Supervision BPOM-RI, Dra. Antonia Retno Tyas Utami, Apt. MEpid., states that dextromethorphan, being chemically similar to morphine, has a much more dangerous and direct effect to the central nervous system, thus causing mental breakdown in the user. She also claimed, without citing any prior scientific study or review, that unlike morphine users, dextromethorphan users cannot be rehabilitated. [50] This claim is contradicted by numerous scientific studies which show that naloxone alone offers effective treatment and promising therapy results in treating dextromethorphan addiction and poisoning. [51] [52] [53] Dra. Antonia Retno Tyas Utami also claimed high rates of dextromethorphan abuse - including fatalities - in Indonesia, and even more questionable, suggested that codeine, despite being a more physically addictive μ-opioid class antitussive, be made available as an alternative to dextromethorphan. [54]

United States

No legal distinction currently exists in the United States between medical and recreational use, sale, or purchase. Some states and store chains have implemented restrictions, such as requiring signatures for DXM sale, limiting quantities allowable for purchase, and requiring that purchasers be over the age of majority in their state. The sale of dextromethorphan in its pure powder form may incur penalties, although no explicit law exists prohibiting its sale or possession, other than in Illinois. Cases of individuals being sentenced to time in prison and other penalties for selling pure dextromethorphan in this form have been reported, because of the incidental violation of more general laws for the sale of legitimate drugs – such as resale of a medication without proper warning labels. [10]

Dextromethorphan was excluded from the Controlled Substances Act (CSA) of 1970 and was specifically excluded from the Single Convention on Narcotic Drugs. As of 2010, it was still excluded from U.S. Schedules of Controlled Substances; however, officials have warned that it could still be added if increased abuse warrants its scheduling. [9] The motivation behind its exclusion from the CSA was that under the CSA, all optical isomers of listed Schedule II opiates are automatically Schedule II substances. Since dextromethorphan is an optical isomer of the Schedule II opiate levomethorphan (but does not act like an opiate), an exemption was necessary to keep it an uncontrolled substance. The Federal Analog Act does not apply to dextromethorphan because a new drug application has been filed for it.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Phencyclidine</span> Dissociative hallucinogenic drug, mostly used recreationally

Phencyclidine or phenylcyclohexyl piperidine (PCP), also known in its use as a street drug as angel dust among other names, is a dissociative anesthetic mainly used recreationally for its significant mind-altering effects. PCP may cause hallucinations, distorted perceptions of sounds, and violent behavior. As a recreational drug, it is typically smoked, but may be taken by mouth, snorted, or injected. It may also be mixed with cannabis or tobacco.

Dissociatives, colloquially dissos, are a subclass of hallucinogens that distort perception of sight and sound and produce feelings of detachment – dissociation – from the environment and/or self. Although many kinds of drugs are capable of such action, dissociatives are unique in that they do so in such a way that they produce hallucinogenic effects, which may include dissociation, a general decrease in sensory experience, hallucinations, dream-like states or anesthesia. Despite most dissociatives' main mechanism of action being tied to NMDA receptor antagonism, some of these substances, which are nonselective in action and affect the dopamine and/or opioid systems, may be capable of inducing more direct and repeatable euphoria or symptoms which are more akin to the effects of typical "hard drugs" or common drugs of abuse. This is likely why dissociatives are considered to be addictive with a fair to moderate potential for abuse, unlike psychedelics. Despite some dissociatives, such as phencyclidine (PCP) possessing stimulating properties, most dissociatives seem to have a general depressant effect and can produce sedation, respiratory depression, nausea, disorientation, analgesia, anesthesia, ataxia, cognitive and memory impairment as well as amnesia.

<span class="mw-page-title-main">5-MeO-aMT</span> Chemical compound

5-MeO-αMT or 5-methoxy-α-methyltryptamine, α,O-Dimethylserotonin (Alpha-O) is a potent psychedelic tryptamine. It is soluble in ethanol.

<span class="mw-page-title-main">Dizocilpine</span> Chemical compound

Dizocilpine (INN), also known as MK-801, is a pore blocker of the NMDA receptor, a glutamate receptor, discovered by a team at Merck in 1982. Glutamate is the brain's primary excitatory neurotransmitter. The channel is normally blocked with a magnesium ion and requires depolarization of the neuron to remove the magnesium and allow the glutamate to open the channel, causing an influx of calcium, which then leads to subsequent depolarization. Dizocilpine binds inside the ion channel of the receptor at several of PCP's binding sites thus preventing the flow of ions, including calcium (Ca2+), through the channel. Dizocilpine blocks NMDA receptors in a use- and voltage-dependent manner, since the channel must open for the drug to bind inside it. The drug acts as a potent anti-convulsant and probably has dissociative anesthetic properties, but it is not used clinically for this purpose because of the discovery of brain lesions, called Olney's lesions (see below), in laboratory rats. Dizocilpine is also associated with a number of negative side effects, including cognitive disruption and psychotic-spectrum reactions. It inhibits the induction of long term potentiation and has been found to impair the acquisition of difficult, but not easy, learning tasks in rats and primates. Because of these effects of dizocilpine, the NMDA receptor pore blocker ketamine is used instead as a dissociative anesthetic in human medical procedures. While ketamine may also trigger temporary psychosis in certain individuals, its short half-life and lower potency make it a much safer clinical option. However, dizocilpine is the most frequently used uncompetitive NMDA receptor antagonist in animal models to mimic psychosis for experimental purposes.

<span class="mw-page-title-main">Dextrorphan</span> Psychoactive cough suppressant medication

Dextrorphan (DXO) is a psychoactive drug of the morphinan class which acts as an antitussive or cough suppressant and in high doses a dissociative hallucinogen. It is the dextrorotatory enantiomer of racemorphan; the levorotatory enantiomer is levorphanol. Dextrorphan is produced by O-demethylation of dextromethorphan by CYP2D6. Dextrorphan is an NMDA antagonist and contributes to the psychoactive effects of dextromethorphan.

<span class="mw-page-title-main">Olney's lesions</span> Neurotoxicity caused by some NMDA receptor antagonists

Olney's lesions, also known as NMDA receptor antagonist neurotoxicity (NAT), is a form of brain damage consisting of selective death of neurons but not glia, observed in restricted brain regions of rats and certain other animal models exposed to large quantities of psychoactive drugs that inhibit the normal operation of the neuronal NMDA receptor. NMDA antagonism is common in anesthesia, as well as certain psychiatric treatments.

<span class="mw-page-title-main">Dextromethorphan</span> Cough suppressant, antidepressant, and dissociative drug

Dextromethorphan (DXM), sold under the trade name Robitussin among others, is a cough suppressant used in many cough and cold medicines. In 2022, the FDA approved the combination dextromethorphan/bupropion to serve as a rapid acting antidepressant in patients with major depressive disorder.

<span class="mw-page-title-main">Nalbuphine</span> Opioid analgesic

Nalbuphine, sold under the brand names Nubain among others, is an opioid analgesic which is used in the treatment of pain. It is given by injection into a vein, muscle, or fat.

<span class="mw-page-title-main">Levorphanol</span> Opioid analgesic drug

Levorphanol is an opioid medication used to treat moderate to severe pain. It is the levorotatory enantiomer of the compound racemorphan. Its dextrorotatory counterpart is dextrorphan.

<span class="mw-page-title-main">Morphinan</span> Chemical compound

Morphinan is the prototype chemical structure of a large chemical class of psychoactive drugs, consisting of opiate analgesics, cough suppressants, and dissociative hallucinogens, among others. Typical examples include compounds such as morphine, codeine, and dextromethorphan (DXM). Despite related molecular structures, the pharmacological profiles and mechanisms of action between the various types of morphinan substances can vary substantially. They tend to function either as μ-opioid receptor agonists (analgesics), or NMDA receptor antagonists (dissociatives).

<span class="mw-page-title-main">Levomethorphan</span> Opioid analgesic

Levomethorphan (LVM) (INN, BAN) is an opioid analgesic of the morphinan family that has never been marketed. It is the L-stereoisomer of racemethorphan (methorphan). The effects of the two isomers of racemethorphan are quite different, with dextromethorphan (DXM) being an antitussive at low doses and a dissociative hallucinogen at much higher doses. Levomethorphan is about five times stronger than morphine.

<span class="mw-page-title-main">NMDA receptor antagonist</span> Class of anesthetics

NMDA receptor antagonists are a class of drugs that work to antagonize, or inhibit the action of, the N-Methyl-D-aspartate receptor (NMDAR). They are commonly used as anesthetics for humans and animals; the state of anesthesia they induce is referred to as dissociative anesthesia.

<span class="mw-page-title-main">Pentoxyverine</span> Antitussive / cough suppressant

Pentoxyverine (rINN) or carbetapentane is an antitussive commonly used for cough associated with illnesses like common cold. It is sold over-the-counter as Solotuss, or in combination with other medications, especially decongestants. One such product is Certuss, a combination of guaifenesin and pentoxyverine. The drug has been available in the form of drops, suspensions and suppositories.

<span class="mw-page-title-main">Dimemorfan</span> Cough suppressant

Dimemorfan (INN), or dimemorfan phosphate (JAN), also known as 3,17-dimethylmorphinan, is an antitussive of the morphinan family that is widely used in Japan and is also marketed in Spain and Italy. It was developed by Yamanouchi Pharmaceutical and introduced in Japan in 1975. It was later introduced in Spain in 1981 and Japan in 1985.

Hallucinogens are a large and diverse class of psychoactive drugs that can produce altered states of consciousness characterized by major alterations in thought, mood, and perception as well as other changes. Most hallucinogens can be categorized as either being psychedelics, dissociatives, or deliriants.

<span class="mw-page-title-main">Methoxetamine</span> Dissociative drug

Methoxetamine (MXE) is a dissociative hallucinogen that has been sold as a designer drug. It differs from many dissociatives such as ketamine and phencyclidine (PCP) that were developed as pharmaceutical drugs for use as general anesthetics in that it was designed specifically to increase the antidepressant effects of ketamine.

Dextromethorphan/quinidine, sold under the brand name Nuedexta, is a fixed-dose combination medication for the treatment of pseudobulbar affect (PBA). It contains dextromethorphan (DXM) and the class I antiarrhythmic agent quinidine.

<span class="mw-page-title-main">Dextromethorphan/bupropion</span> Combination medication

Dextromethorphan/bupropion (DXM/BUP), sold under the brand name Auvelity, is a combination medication for the treatment of major depressive disorder (MDD). Its active components are dextromethorphan (DXM) and bupropion. Patients who stayed on the medication had an average of 11% greater reduction in depressive symptoms than placebo in an FDA approval trial. It is taken as a tablet by mouth.

Deudextromethorphan/quinidine is a combination of deudextromethorphan and quinidine (Q) which is under development by Avanir Pharmaceuticals for the treatment of a variety of neurological and psychiatric indications. The pharmacological profile of d-DXM/Q is similar to that of dextromethorphan/quinidine (DXM/Q). DXM and d-DXM act as σ1 receptor agonists, NMDA receptor antagonists, and serotonin–norepinephrine reuptake inhibitors, among other actions, while quinidine is an antiarrhythmic agent acting as a CYP2D6 inhibitor. Quinidine inhibits the metabolism of DXM and d-DXM into dextrorphan (DXO), which has a different pharmacological profile from DXM. Deuteration of DXM hinders its metabolism by CYP2D6 into DXO, thereby allowing for lower doses of quinidine in the combination. This in turn allows for lower potential for drug interactions and cardiac adverse effects caused by quinidine. As of September 2020, d-DXM/Q is in phase 3 clinical trials for agitation, phase 2/3 trials for schizophrenia, and phase 2 trials for brain injuries, impulse control disorders, major depressive disorder, and neurodegenerative disorders.

<span class="mw-page-title-main">Methocinnamox</span> Opioid antagonist

Methocinnamox (MCAM) is an opioid receptor antagonist. It is a pseudo-irreversible non-competitive antagonist of the μ-opioid receptor and a competitive antagonist of the κ- and δ-opioid receptors. The drug has a very long duration of action of up to months with a single dose due to its pseudo-irreversibility. It is administered in animals by intravenous or subcutaneous injection.

References

  1. 1 2 3 "Dextromethorphan (DXM) | CESAR". Cesar.umd.edu. Archived from the original on 6 January 2018. Retrieved 14 February 2014.
  2. "Cough Medicine Abuse by Teens".
  3. "Acetaminophen and dextromethorphan medical facts from Drugs.com". Drugs.com. Retrieved 18 April 2017.
  4. "DXM APAP". Cigna.com. Cigna Health Care. Archived from the original on 6 January 2013. Retrieved 4 January 2012.
  5. White, William E. "The Dextromethorphan FAQ". Erowid. Retrieved 17 August 2018.
  6. "Intelligence Bulletin: DXM (Dextromethorphan)".
  7. Abuse, National Institute on Drug (17 December 2017). "Over-the-Counter Medicines". www.drugabuse.gov. Retrieved 3 December 2019.
  8. "Dextromethorphan". www.chpa.org. Retrieved 3 December 2019.
  9. 1 2 3 "DEXTROMETHORPHAN (Street Names: DXM, CCC, Triple C, Skittles, Robo, Poor Man's PCP". Deadiversion.usdoj.gov). Archived from the original on 19 December 2010.
  10. 1 2 "FORMER MINOTMAN AND INTERNET CHEMICAL COMPANY SENTENCED FOR SELLING DESIGNER AND MISBRANDED DRUGS AND VIOLATING FEDERAL CUSTOMS LAWS" (PDF) (Press release). Erowid. 30 June 2006. Archived (PDF) from the original on 6 June 2007. Retrieved 14 February 2014.
  11. "Erowid DXM Vault : Effects". Erowid. Retrieved 14 February 2014.
  12. "Drug Abuse Help: DXM Information". Drugabusehelp.com. Archived from the original on 13 August 2020. Retrieved 14 February 2014.
  13. ":: Cough Syrup and Dextromethorphan (DXM) Addiction and Abuse – Drug Rehab Information". Info-drug-rehab.com. Archived from the original on 17 September 2013.
  14. Stanciu, Cornel N.; Penders, Thomas M.; Rouse, Eden M. (August 2016). "Recreational use of dextromethorphan, 'Robotripping'-A brief review". The American Journal on Addictions. 25 (5): 374–377. doi:10.1111/ajad.12389. PMID   27288091.
  15. Bornstein, S; Czermak, M; Postel, J (1968). "Apropos of a case of voluntary medicinal intoxication with dextromethorphan hydrobromide". Annales Médico-Psychologiques. 1 (3): 447–451. PMID   5670018.
  16. Dodds, A; Revai, E (1967). "Toxic psychosis due to dextromethorphan". Med J Aust. 2 (5): 231. doi:10.5694/j.1326-5377.1967.tb97739.x. S2CID   222056319.
  17. Schneider, Sandra M.; Michelson, Edward A.; Boucek, Charles D.; Ilkhanipour, Kaveh (May 1991). "Dextromethorphan poisoning reversed by naloxone". The American Journal of Emergency Medicine. 9 (3): 237–238. doi:10.1016/0735-6757(91)90085-x. PMID   2018593.
  18. "Erowid DXM Vault : Drug Tests". Erowid. Retrieved 14 February 2014.
  19. Anderson, Cliff. "The Bad News Isn't In". Erowid. Retrieved 14 February 2014.
  20. Hashimoto, K; Tomitaka, S; Narita, N; Minabe, Y; Iyo, M; Fukui, S (1996). "Induction of heat shock protein Hsp70 in rat retrosplenial cortex following administration of dextromethorphan". Environmental Toxicology and Pharmacology. 1 (4): 235–239. Bibcode:1996EnvTP...1..235H. doi:10.1016/1382-6689(96)00016-6. PMID   21781688.
  21. Carliss, RD; Radovsky, A; Chengelis, CP; O'neill, TP; Shuey, DL (2007). "Oral administration of dextromethorphan does not produce neuronal vacuolation in the rat brain". NeuroToxicology. 28 (4): 813–8. doi:10.1016/j.neuro.2007.03.009. PMID   17573115.
  22. Zhang, TY; Cho, HJ; Lee, S; Lee, JH; Choi, SH; Ryu, V; et al. (2006). "Impairments in water maze learning of aged rats that received dextromethorphan repeatedly during adolescent period". Psychopharmacology. 191 (1): 171–9. doi:10.1007/s00213-006-0548-3. PMID   17021924. S2CID   24001315.
  23. White, William E. "Erowid DXM Vault : This is your brain on dissociatives, the bad news is finally in" (TXT). Dextroverse.com. Retrieved 14 February 2014.
  24. White, William E. "Erowid DXM Vault : Response to "The Bad News Isn't In:" Please Pass The Crow, by William E. White". Erowid. Retrieved 14 February 2014.
  25. Ziaee, V; Akbari Hamed, E; Hoshmand, A; Amini, H; Kebriaeizadeh, A; Saman, K (September 2005). "Side effects of dextromethorphan abuse, a case series". Addictive Behaviors. 30 (8): 1607–13. doi:10.1016/j.addbeh.2005.02.005. PMID   16122622.
  26. Kirages, T; Sulé, H; Mycyk, M (2003). "Severe manifestations of coricidin intoxication". Am J Emerg Med. 21 (6): 473–5. doi:10.1016/S0735-6757(03)00168-2. PMID   14574654.
  27. Kintz, P; Mangin, P (December 1992). "Toxicological Findings in a Death Involving Dextromethorphan and Terfenadine". The American Journal of Forensic Medicine and Pathology. 13 (4): 351–352. doi:10.1097/00000433-199212000-00018. PMID   1288270. S2CID   28648140.
  28. "Erowid DXM Vault : Guide to DXM in Non-Prescription Drugs". Erowid. Retrieved 14 February 2014.
  29. Assimos, DG; Langenstroer, P; Leinbach, RF; Mandel, NS; Stern, JM; Holmes, RP (1999). "Guaifenesin- and ephedrine-induced stones". J. Endourol. 13 (9): 665–7. doi:10.1089/end.1999.13.665. PMID   10608519.
  30. "Drugs and Human Performance FACT SHEETS – Dextromethorphan". Nhsta.gov. National Highway Traffic Safety Administration. Archived from the original on 16 October 2023. Retrieved 14 February 2014.
  31. "Erowid DXM Vault : DXM FAQ – Side Effects". Erowid. Retrieved 14 February 2014.
  32. Helmy, Sanaa A. K.; Bali, Ayham (March 2001). "The Effect of the Preemptive Use of the NMDA Receptor Antagonist Dextromethorphan on Postoperative Analgesic Requirements". Anesthesia and Analgesia. 92 (3): 739–744. doi: 10.1213/00000539-200103000-00035 . PMID   11226111. S2CID   28669085. INIST   914417.
  33. Pechnick, Robert N.; Poland, Russell E. (May 2004). "Comparison of the Effects of Dextromethorphan, Dextrorphan, and Levorphanol on the Hypothalamo-Pituitary-Adrenal Axis". Journal of Pharmacology and Experimental Therapeutics. 309 (2): 515–522. doi:10.1124/jpet.103.060038. PMID   14742749. S2CID   274504.
  34. Muir, KW; Lees, KR (1995). "Clinical experience with excitatory amino acid antagonist drugs". Stroke. 26 (3): 503–513. doi: 10.1161/01.STR.26.3.503 . PMID   7886734.
  35. Kristensen, JD; Svensson, B; Gordh Jr., T (1992). "The NMDA-receptor antagonist CPP abolishes neurogenic 'wind-up pain' after intrathecal administration in humans". Pain. 51 (2): 249–253. doi:10.1016/0304-3959(92)90266-E. PMID   1484720. S2CID   37828325.
  36. "Erowid DXM Vault : Legal Status". Erowid. Retrieved 14 February 2014.
  37. "Decision of the Government of the Russian Federation No. 681 of June 30, 1998 on the Approval of the List of Narcotic Drugs, Psychotropic Substances and Their Precursors That Shall Be Subject to Control in the Russian Federation (with Amendments and Additions)". Base.garant.ru (in Russian). Retrieved 14 February 2014.
  38. 国家药监局关于氢溴酸右美沙芬口服单方制剂转换为处方药的公告(2021年第151号) [The National Medical Products Administration's Announcement on the Reclassification of Dextromethorphan Hydrobromide Oral Formulations to Prescription Drugs (Announcement No. 151 of 2021)]. 国家药品监督管理局. 16 December 2021. Archived from the original on 15 February 2022. Retrieved 15 February 2022.
  39. Wei, Qian (16 February 2023). Zhou, Lei (ed.). 深陷困境的年轻人,嗑“镇咳药”成瘾 [Young people mired in difficulties addicted to cough suppressants]. 三联生活周刊 (in Chinese (China)). 三联数字刊. Archived from the original on 19 April 2023. Retrieved 15 April 2023.
  40. 右美沙芬等被列入第二类精神药品目录_绿政公署_澎湃新闻-The Paper. The Paper . Retrieved 7 May 2024.
  41. 国家药监局 公安部 国家卫生健康委关于调整精神药品目录的公告(2024年第54号) [Announcement by the National Medical Products Administration, Ministry of Public Security, and National Health Commission on the Adjustment of the Catalog of Psychotropic Drugs (No. 54 of 2024)].
  42. "【禁毒科普】别碰!有人贩卖"右美沙芬"牟利,被判刑!". The Paper .
  43. "基层动态丨盐池县人民法院公开审理一起贩卖毒品案". The Paper .
  44. "售卖右美沙芬给吸毒人员,药店店主明知故犯获刑". 中国禁毒.
  45. "BPOM Tetap Batalkan Izin Edar Obat Dekstrometorfan". 22 May 2014.
  46. "BNN Ancam Tutup Apotek Penjual Dextromethorphan".
  47. "Archived copy" (PDF). Archived from the original (PDF) on 10 August 2017. Retrieved 25 April 2015.{{cite web}}: CS1 maint: archived copy as title (link)[ full citation needed ]
  48. "Badan Pengawas Obat dan Makanan". Archived from the original on 3 February 2017. Retrieved 25 April 2015.[ full citation needed ]
  49. "Ini Alasan 130 Obat Batuk Ditarik dari Pasaran". 5 June 2014.
  50. "Dibanding Morfin, Obat Batuk Berdekstro Lebih Mematikan!". 2 October 2013.
  51. Schneider, Sandra M.; Michelson, Edward A.; Boucek, Charles D.; Ilkhanipour, Kaveh (1991). "Dextromethorphan poisoning reversed by naloxone". The American Journal of Emergency Medicine. 9 (3): 237–8. doi:10.1016/0735-6757(91)90085-X. PMID   2018593.
  52. Shaul, W. L.; Wandell, M; Robertson, W. O. (1977). "Dextromethorphan toxicity: Reversal by naloxone". Pediatrics. 59 (1): 117–8. doi:10.1542/peds.59.1.117. PMID   840529. S2CID   29592313.
  53. Manning, Barton H.; Mao, Jianren; Frenk, Hanan; Price, Donald D.; Mayer, David J. (1996). "Continuous co-administration of dextromethorphan or MK-801 with morphine: Attenuation of morphine dependence and naloxone-reversible attenuation of morphine tolerance". Pain. 67 (1): 79–88. doi:10.1016/0304-3959(96)81972-5. PMID   8895234. S2CID   5999093.
  54. "BPOM akan Tarik Pil Dekstro". October 2013.