Conessine

Last updated
Conessine
Conessine.svg
Names
Preferred IUPAC name
(3S,3aS,5aS,5bR,9S,11aR,11bS,13aR)-N,N,2,3,11a-Pentamethyl-2,3,3a,4,5,5a,5b,6,8,9,10,11,11a,11b,12,13-hexadecahydro-1H-naphtho[2′,1′:4,5]indeno[1,7a-c]pyrrol-9-amine
Other names
Neriine; Roquessine; Wrightine; Conessinum; (3β)-N,N-Dimethyl-con-5-enin-3-amine
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.008.089 OOjs UI icon edit-ltr-progressive.svg
MeSH Conessine
PubChem CID
UNII
  • InChI=1S/C24H40N2/c1-16-20-8-9-22-19-7-6-17-14-18(25(3)4)10-12-23(17,2)21(19)11-13-24(20,22)15-26(16)5/h6,16,18-22H,7-15H2,1-5H3/t16-,18-,19+,20+,21-,22-,23-,24-/m0/s1 X mark.svgN
    Key: GPLGAQQQNWMVMM-MYAJQUOBSA-N X mark.svgN
  • InChI=1/C24H40N2/c1-16-20-8-9-22-19-7-6-17-14-18(25(3)4)10-12-23(17,2)21(19)11-13-24(20,22)15-26(16)5/h6,16,18-22H,7-15H2,1-5H3/t16-,18-,19+,20+,21-,22-,23-,24-/m0/s1
    Key: GPLGAQQQNWMVMM-MYAJQUOBBK
  • C[C@H]1[C@H]2CC[C@@H]3[C@@]2(CC[C@H]4[C@H]3CC=C5[C@@]4(CC[C@@H](C5)N(C)C)C)CN1C
Properties
C24H40N2
Molar mass 356.598 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Conessine is a steroidal alkaloid found in a number of plant species from the family Apocynaceae, including Holarrhena floribunda , [1] Holarrhena antidysenterica [2] and Funtumia elastica . [3] It acts as a histamine antagonist, selective for the H3 subtype (with an affinity of pKi = 8.27; Ki = ~5 nM). [4] It was also found to have long CNS clearance times, high blood–brain barrier penetration and high affinity for the adrenergic receptors. [5]

Related Research Articles

<span class="mw-page-title-main">Selective progesterone receptor modulator</span>

A selective progesterone receptor modulator (SPRM) is an agent that acts on the progesterone receptor (PR), the biological target of progestogens like progesterone. A characteristic that distinguishes such substances from full receptor agonists and full antagonists is that their action differs in different tissues, i.e. agonist in some tissues while antagonist in others. This mixed profile of action leads to stimulation or inhibition in tissue-specific manner, which further raises the possibility of dissociating undesirable adverse effects from the development of synthetic PR-modulator drug candidates.

<span class="mw-page-title-main">Fenobam</span> Chemical compound

Fenobam is an imidazole derivative developed by McNeil Laboratories in the late 1970s as a novel anxiolytic drug with an at-the-time-unidentified molecular target in the brain. Subsequently, it was determined that fenobam acts as a potent and selective negative allosteric modulator of the metabotropic glutamate receptor subtype mGluR5, and it has been used as a lead compound for the development of a range of newer mGluR5 antagonists.

<span class="mw-page-title-main">Lobeline</span> Chemical compound

Lobeline is a piperidine alkaloid found in a variety of plants, particularly those in the genus Lobelia, including Indian tobacco, Devil's tobacco, great lobelia, Lobelia chinensis, and Hippobroma longiflora. In its pure form, it is a white amorphous powder which is freely soluble in water.

<span class="mw-page-title-main">Herkinorin</span> Opioid analgesic compound

Herkinorin is an opioid analgesic that is an analogue of the natural product salvinorin A. It was discovered in 2005 during structure-activity relationship studies into neoclerodane diterpenes, the family of chemical compounds of which salvinorin A is a member.

5-HT<sub>6</sub> receptor Protein-coding gene in the species Homo sapiens

The 5HT6 receptor is a subtype of 5HT receptor that binds the endogenous neurotransmitter serotonin (5-hydroxytryptamine, 5HT). It is a G protein-coupled receptor (GPCR) that is coupled to Gs and mediates excitatory neurotransmission. HTR6 denotes the human gene encoding for the receptor.

<span class="mw-page-title-main">Metabotropic glutamate receptor 2</span> Mammalian protein found in humans

Metabotropic glutamate receptor 2 (mGluR2) is a protein that, in humans, is encoded by the GRM2 gene. mGluR2 is a G protein-coupled receptor (GPCR) that couples with the Gi alpha subunit. The receptor functions as an autoreceptor for glutamate, that upon activation, inhibits the emptying of vesicular contents at the presynaptic terminal of glutamatergic neurons.

The alpha-4 beta-2 nicotinic receptor, also known as the α4β2 receptor, is a type of nicotinic acetylcholine receptor implicated in learning, consisting of α4 and β2 subunits. It is located in the brain, where activation yields post- and presynaptic excitation, mainly by increased Na+ and K+ permeability.

<span class="mw-page-title-main">Himbacine</span> Chemical compound

Himbacine is an alkaloid isolated from the bark of Australian magnolias. Himbacine has been synthesized using a Diels-Alder reaction as a key step. Himbacine's activity as a muscarinic receptor antagonist, with specificity for the muscarinic acetylcholine receptor M2, made it a promising starting point in Alzheimer's disease research. The development of a muscarinic antagonist based on himbacine failed but an analog, vorapaxar, has been approved by the FDA as a thrombin receptor antagonist.

<span class="mw-page-title-main">Epiboxidine</span> Chemical compound

Epiboxidine is a chemical compound which acts as a partial agonist at neural nicotinic acetylcholine receptors, binding to both the α3β4 and the α4β2 subtypes. It was developed as a less toxic analogue of the potent frog-derived alkaloid epibatidine, which is around 200 times stronger than morphine as an analgesic but produces extremely dangerous toxic nicotinic side effects.

An H3 receptor antagonist is a type of antihistaminic drug used to block the action of histamine at H3 receptors.

<span class="mw-page-title-main">A-349821</span> Chemical compound

A-349,821 is a potent and selective histamine H3 receptor antagonist (or possibly an inverse agonist). It has nootropic effects in animal studies, although there do not appear to be any plans for clinical development at present and it is currently only used in laboratory research.

GSK-189,254 is a potent and selective H3 histamine receptor inverse agonist developed by GlaxoSmithKline. It has subnanomolar affinity for the H3 receptor (Ki = 0.2nM) and selectivity of over 10,000x for H3 over other histamine receptor subtypes. Animal studies have shown it to possess not only stimulant and nootropic effects, but also analgesic action suggesting a role for H3 receptors in pain processing in the spinal cord. GSK-189,254 and several other related drugs are currently being investigated as a treatment for Alzheimer's disease and other forms of dementia, as well as possible use in the treatment of conditions such as narcolepsy, or neuropathic pain which do not respond well to conventional analgesic drugs.

<span class="mw-page-title-main">Ibipinabant</span> Chemical compound

Ibipinabant (SLV319, BMS-646,256) is a drug used in scientific research which acts as a potent and highly selective CB1 antagonist. It has potent anorectic effects in animals, and was researched for the treatment of obesity, although CB1 antagonists as a class have now fallen out of favour as potential anorectics following the problems seen with rimonabant, and so ibipinabant is now only used for laboratory research, especially structure-activity relationship studies into novel CB1 antagonists. SLV330, which is a structural analogue of Ibipinabant, was reported active in animal models related to the regulation of memory, cognition, as well as in addictive behavior. An atom-efficient synthesis of ibipinabant has been reported.

<span class="mw-page-title-main">9-Aminomethyl-9,10-dihydroanthracene</span> Chemical compound

AMDA (9-Aminomethyl-9,10-dihydroanthracene) is an organic compound which acts as a potent and selective antagonist for the 5-HT2A receptor. It has been used to help study the shape of the 5-HT2A protein, and develop a large family of related derivatives with even higher potency and selectivity.

<span class="mw-page-title-main">Nantenine</span> Chemical compound

Nantenine is an alkaloid found in the plant Nandina domestica as well as some Corydalis species. It is an antagonist of both the α1-adrenergic receptor and the serotonin 5-HT2A receptor, and blocks both the behavioral and physiological effects of MDMA in animals.

<span class="mw-page-title-main">Eugeroic</span> Drugs for wakefulness and alertness

Eugeroics, also known as wakefulness-promoting agents and wakefulness-promoting drugs, are a class of drugs that promote wakefulness and alertness. They are medically indicated for the treatment of certain sleep disorders including excessive daytime sleepiness (EDS) in narcolepsy or obstructive sleep apnea (OSA). Eugeroics are also often prescribed off-label for the treatment of EDS in idiopathic hypersomnia. In contrast to classical psychostimulants, such as methylphenidate and amphetamine, which are also used in the treatment of these disorders, eugeroics typically do not produce marked euphoria, and, consequently, have a lower addictive potential.

<span class="mw-page-title-main">MN-25</span> Chemical compound

MN-25 (UR-12) is a drug invented by Bristol-Myers Squibb, that acts as a reasonably selective agonist of peripheral cannabinoid receptors. It has moderate affinity for CB2 receptors with a Ki of 11 nM, but 22x lower affinity for the psychoactive CB1 receptors with a Ki of 245 nM. The indole 2-methyl derivative has the ratio of affinities reversed however, with a Ki of 8 nM at CB1 and 29 nM at CB2, which contrasts with the usual trend of 2-methyl derivatives having increased selectivity for CB2 (cf. JWH-018 vs JWH-007, JWH-081 vs JWH-098).

<span class="mw-page-title-main">Biphalin</span> Chemical compound

Biphalin is a dimeric enkephalin endogenous peptide (Tyr-D-Ala-Gly-Phe-NH)2 composed of two tetrapeptides derived from enkephalins, connected 'tail-to-tail' by a hydrazide bridge. The presence of two distinct pharmacophores confers on biphalin a high affinity for both μ and δ opioid receptors (with an EC50 of about 1–5 nM for both μ and δ receptors), therefore it has analgesic activity. Biphalin presents a considerable antinociceptive profile. In fact, when administered intracerebroventricularly in mice, biphalin displays a potency almost 7-fold greater than that of the ultra-potent alkaloid agonist, etorphine and 7000-fold greater than morphine; biphalin and morphine were found to be equipotent after intraperitoneal administration. The extraordinary in vivo potency shown by this compound is coupled with low side-effects, in particular, to produce no dependency in chronic use. For these reasons, several efforts have been carried out in order to obtain more information about structure-activity relationship (SAR). Results clearly indicate that, at least for μ receptor binding, the presence of two pharmacophores is not necessary; Tyr1 is indispensable for analgesic activity, while replacing Phe at the position 4 and 4' with non-aromatic, but lipophilic amino acids does not greatly change the binding properties and in general 4,4' positions are found to be important to design biphalin analogues with increased potency and modified μ/δ selectivity. The hydrazide linker is not fundamental for activity or binding, and it can be conveniently substituted by different conformationally constrained cycloaliphatic diamine linkers.

<span class="mw-page-title-main">AMG-517</span> Chemical compound

AMG-517 is a drug which acts as a potent and selective blocker of the TRPV1 ion channel. It was developed as a potential treatment for chronic pain, but while it was an effective analgesic in animal studies it was dropped from human clinical trials at Phase I due to producing hyperthermia as a side effect, as well as poor water solubility. It is still used in scientific research into the function of the TRPV1 channel and its role in pain and inflammation, and has been used as a template for the design of several newer analogues which have improved properties.

References

  1. Duez, P; Chamart, S; Lejoly, J; Hanocq, M; Zeba, B; Sawadogo, M; Guissou, P; Molle, L (1987). "Changes in conessine in stem bark of Holarrhena floribunda in Burkina Faso". Annales pharmaceutiques françaises. 45 (4): 307–13. PMID   3445993.
  2. Kumar, N; Singh, B; Bhandari, P; Gupta, A. P.; Kaul, V. K. (2007). "Steroidal alkaloids from Holarrhena antidysenterica (L.) WALL". Chemical & Pharmaceutical Bulletin. 55 (6): 912–4. doi: 10.1248/cpb.55.912 . PMID   17541193.
  3. Zirihi, G. N.; Grellier, P; Guédé-Guina, F; Bodo, B; Mambu, L (2005). "Isolation, characterization and antiplasmodial activity of steroidal alkaloids from Funtumia elastica (Preuss) Stapf". Bioorganic & Medicinal Chemistry Letters. 15 (10): 2637–40. doi:10.1016/j.bmcl.2005.03.021. PMID   15863333.
  4. Santora, V. J.; Covel, J. A.; Hayashi, R; Hofilena, B. J.; Ibarra, J. B.; Pulley, M. D.; Weinhouse, M. I.; Sengupta, D; Duffield, J. J.; Semple, G; Webb, R. R.; Sage, C; Ren, A; Pereira, G; Knudsen, J; Edwards, J. E.; Suarez, M; Frazer, J; Thomsen, W; Hauser, E; Whelan, K; Grottick, A. J. (2008). "A new family of H3 receptor antagonists based on the natural product Conessine". Bioorganic & Medicinal Chemistry Letters. 18 (4): 1490–4. doi:10.1016/j.bmcl.2007.12.059. PMID   18194865.
  5. Zhao, Chen; Sun, Minghua; Bennani, Youssef L.; Gopalakrishnan, Sujatha M.; Witte, David G.; Miller, Thomas R.; Krueger, Kathleen M.; Browman, Kaitlin E.; Thiffault, Christine; Wetter, Jill; Marsh, Kennan C.; Hancock, Arthur A.; Esbenshade, Timothy A.; Cowart, Marlon D. (2008). "The Alkaloid Conessine and Analogues as Potent Histamine H3Receptor Antagonists". Journal of Medicinal Chemistry. 51 (17): 5423–30. doi:10.1021/jm8003625. PMID   18683917.