Impentamine

Last updated
Impentamine
Impentamine.svg
Names
IUPAC name
5-(1H-imidazol-5-yl)pentan-1-amine
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
MeSH Impentamine
PubChem CID
UNII
  • InChI=1S/C8H15N3/c9-5-3-1-2-4-8-6-10-7-11-8/h6-7H,1-5,9H2,(H,10,11) X mark.svgN
    Key: MZCJWLAXZRFUPI-UHFFFAOYSA-N X mark.svgN
  • InChI=1/C8H15N3/c9-5-3-1-2-4-8-6-10-7-11-8/h6-7H,1-5,9H2,(H,10,11)
    Key: MZCJWLAXZRFUPI-UHFFFAOYAF
  • C1=C(NC=N1)CCCCCN
Properties
C8H15N3
Molar mass 153.2248 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Impentamine is a histamine antagonist selective for the H3 subtype. [1] [2]

Related Research Articles

H1 antagonists, also called H1 blockers, are a class of medications that block the action of histamine at the H1 receptor, helping to relieve allergic reactions. Agents where the main therapeutic effect is mediated by negative modulation of histamine receptors are termed antihistamines; other agents may have antihistaminergic action but are not true antihistamines.

Histamine H<sub>3</sub> receptor Mammalian protein found in Homo sapiens

Histamine H3 receptors are expressed in the central nervous system and to a lesser extent the peripheral nervous system, where they act as autoreceptors in presynaptic histaminergic neurons and control histamine turnover by feedback inhibition of histamine synthesis and release. The H3 receptor has also been shown to presynaptically inhibit the release of a number of other neurotransmitters (i.e. it acts as an inhibitory heteroreceptor) including, but probably not limited to dopamine, GABA, acetylcholine, noradrenaline, histamine and serotonin.

Histamine H<sub>1</sub> receptor Histamine receptor

The H1 receptor is a histamine receptor belonging to the family of rhodopsin-like G-protein-coupled receptors. This receptor is activated by the biogenic amine histamine. It is expressed in smooth muscles, on vascular endothelial cells, in the heart, and in the central nervous system. The H1 receptor is linked to an intracellular G-protein (Gq) that activates phospholipase C and the inositol triphosphate (IP3) signalling pathway. Antihistamines, which act on this receptor, are used as anti-allergy drugs. The crystal structure of the receptor has been determined (shown on the right/below) and used to discover new histamine H1 receptor ligands in structure-based virtual screening studies.

Metiamide Chemical compound

Metiamide is a histamine H2 receptor antagonist developed from another H2 antagonist, burimamide. It was an intermediate compound in the development of the successful anti-ulcer drug cimetidine (Tagamet).

Cipralisant

Cipralisant (GT-2331, tentative trade name Perceptin) is an extremely potent histamine H3 receptor ligand originally developed by Gliatech. Cipralisant was initially classified as a selective H3 antagonist, but newer research (2005) suggests also agonist properties, i. e. functional selectivity. Cipralisant seemed to be well tolerated during early testing, entering Phase II trials for ADHD in 2000.

Tachykinin receptor 1 Protein-coding gene in the species Homo sapiens

The tachykinin receptor 1 (TACR1) also known as neurokinin 1 receptor (NK1R) or substance P receptor (SPR) is a G protein coupled receptor found in the central nervous system and peripheral nervous system. The endogenous ligand for this receptor is Substance P, although it has some affinity for other tachykinins. The protein is the product of the TACR1 gene.

Clobenpropit

Clobenpropit is a histamine H3 receptor antagonist. It has neuroprotective effects via stimulation of GABA release in brain cells in vitro.

Adenosine A<sub>2B</sub> receptor Protein-coding gene in the species Homo sapiens

The adenosine A2B receptor, also known as ADORA2B, is a G-protein coupled adenosine receptor, and also denotes the human adenosine A2b receptor gene which encodes it.

An H3 receptor antagonist is a classification of drugs used to block the action of histamine at the H3 receptor.

A-349821

A-349,821 is a potent and selective histamine H3 receptor antagonist (or possibly an inverse agonist). It has nootropic effects in animal studies, although there do not appear to be any plans for clinical development at present and it is currently only used in laboratory research.

Iodophenpropit is a histamine antagonist which binds selectively to the H3 subtype. Its 125I radiolabelled form has been used for mapping the distribution of H3 receptors in animal studies.

Conessine Chemical compound

Conessine is a steroid alkaloid found in a number of plant species from the family Apocynaceae, including Holarrhena floribunda, Holarrhena antidysenterica and Funtumia elastica. It acts as a histamine antagonist, selective for the H3 subtype (with an affinity of pKi = 8.27; Ki = ~5 nM). It was also found to have long CNS clearance times, high blood-brain barrier penetration and high affinity for the adrenergic receptors.

J-113,397 Chemical compound

J-113,397 is an opioid drug which was the first compound found to be a highly selective antagonist for the nociceptin receptor, also known as the ORL-1 receptor. It is several hundred times selective for the ORL-1 receptor over other opioid receptors, and its effects in animals include preventing the development of tolerance to morphine, the prevention of hyperalgesia induced by intracerebroventricular administration of nociceptin, as well as the stimulation of dopamine release in the striatum, which increases the rewarding effects of cocaine, but may have clinical application in the treatment of Parkinson's disease.

Amthamine Chemical compound

Amthamine is a histamine agonist selective for the H2 subtype. It has been used in vitro and in vivo to study gastric secretion, as well as other functions of the H2 receptor.

Immethridine Chemical compound

Immethridine is a histamine agonist selective for the H3 subtype.

9-Aminomethyl-9,10-dihydroanthracene Chemical compound

AMDA (9-Aminomethyl-9,10-dihydroanthracene) is an organic compound which acts as a potent and selective antagonist for the 5-HT2A receptor. It has been used to help study the shape of the 5-HT2A protein, and develop a large family of related derivatives with even higher potency and selectivity.

Clorotepine Chemical compound

Clorotepine, also known as octoclothepin or octoclothepine, is an antipsychotic of the tricyclic group which was derived from perathiepin in 1965 and marketed in the Czech Republic by Spofa in or around 1971 for the treatment of schizophrenic psychosis.

WB-4101

WB-4101 is a compound which acts as an antagonist at the α1B-adrenergic receptor. It was one of the first selective antagonists developed for this receptor and was invented in 1969, but is still commonly used in research into adrenergic receptors, especially as a lead compound from which to develop more selective drugs.

AMG-517

AMG-517 is a drug which acts as a potent and selective blocker of the TRPV1 ion channel. It was developed as a potential treatment for chronic pain, but while it was an effective analgesic in animal studies it was dropped from human clinical trials at Phase I due to producing hyperthermia as a side effect, as well as poor water solubility. It is still used in scientific research into the function of the TRPV1 channel and its role in pain and inflammation, and has been used as a template for the design of several newer analogues which have improved properties.

Toreforant Antagonist of the histamine H4 receptor.

Toreforant (JNJ-38518168) is an orally-dosed selective antagonist of the histamine H4 receptor that has been studied for various health conditions. It is the successor of a number of H4-selective compounds developed by Johnson & Johnson. Phase IIa clinical trials completed as recently as November 2018 continue to suggest that toreforant is safe.

References

  1. Vollinga, RC; Menge, WM; Leurs, R; Timmerman, H (1995). "Homologs of histamine as histamine H3 receptor antagonists: a new potent and selective H3 antagonist, 4(5)-(5-aminopentyl)-1H-imidazole". Journal of Medicinal Chemistry. 38 (2): 266–71. doi:10.1021/jm00002a008. PMID   7830269.
  2. Van Der Goot, H; Timmerman, H (2000). "Selective ligands as tools to study histamine receptors". European Journal of Medicinal Chemistry. 35 (1): 5–20. doi:10.1016/S0223-5234(00)00101-X. PMID   10733599.