Dauer (German " die Dauer ", English "the endurance", "persistence"; "unlimited time" [1] ) describes an alternative developmental stage of nematode worms, particularly rhabditids including Caenorhabditis elegans , whereby the larva goes into a type of stasis and can survive harsh conditions. [2] [3] Since the entrance of the dauer stage is dependent on environmental cues, it represents a classic and well studied example of polyphenism. [4] [5] The dauer state is given other names in the various types of nematodes such as ‘diapause’ or ‘hypobiosis’, but since the C. elegans nematode has become the most studied nematode, the term ‘dauer stage’ or 'dauer larvae' is becoming universally recognised when referring to this state in other free-living nematodes. The dauer stage is also considered to be equivalent to the infective stage of parasitic nematode larvae.
As Émile Maupas first proposed in 1899 and 1900, all nematodes have five stages separated by four moults. [2] Under environmental conditions that are favorable for reproduction, C. elegans larvae develop through four stages or moults which are designated as L1, L2, L3 and L4. After L4, animals moult to the reproductive adult stage. However, when the environment is unfavorable, L1 and L2 animals have the option to divert their development from reproduction to dauer formation. Signals such as temperature, food supply, and levels of a dauer-inducing pheromone, a population density cue, influence this dauer decision. Dauer larvae are thus considered an alternative L3 stage larva, and this stage is sometimes preceded by L2d. L2d animals are considered pre-dauer and are characterised by delayed development and dark intestines produced by storage of fat. L2d larvae can either continue normal development or enter dauer stage depending on whether the conditions that triggered their formation persist. Dauer is not, however, a permanent condition. In fact, if the food supply and the population density become optimal for growth the dauer larvae can exit this stage and become L4s and then adults. [6]
Dauer larvae are extensively studied by biologists because of their ability to survive harsh environments and live for extended periods of time. For example, C. elegans dauer larvae can survive up to four months, much longer than their average lifespan of about three weeks during normal reproductive development. [7] Two genes that are essential for dauer formation are daf-2 and daf-23. [8] Dauer formation in C. elegans requires a nuclear receptor DAF-12 and a forkhead transcription factor DAF-16. In favorable environments, DAF-12 is activated by a steroid hormone, called dafachronic acid, produced by the cytochrome p450, DAF-9. DAF-9 and DAF-12 have been implicated by Cynthia Kenyon and colleagues as being required for extended longevity seen in animals that lack germlines. Kenyon showed that, although the daf-16 gene is required for life extension in C. elegans, the life extension effect can be uncoupled from dauer growth arrest. [9] The lifespan increase was shown to be associated with an increase in stress resistance. [10]
A characteristic of the dauer stage is the pronounced alae [11] which may be implicated in the entering (L1) and exiting (pre adult or L4 in C. elegans) of the dauer stage.[ citation needed ] The cuticle is thick and contains a unique striated zone in its basal area. [2] [11]
Dauer larvae generally remain motionless, but can react to touch or vibrations. They can stand on their tails, waving their bodies in the air, and attach themselves to any passing animals, particularly insects, enabling them to travel to new food sources. For example, dauer larvae of rhabditids are often found in parallel rows under the elytra of dung beetles, which transport them to fresh supplies of dung. [2] C. elegans strains lacking polyunsaturated fatty acids (PUFAs) undergo increased dauer arrest when grown without cholesterol. A study found endocannabinoids inhibit the dauer formation caused by PUFA deficiency or impaired cholesterol trafficking. [12]
The dauer hypothesis is a theory of evolutionary parasitism, named after the alternative, “dauer” stages of nematode development. It proposes that free-living nematode lineages evolved into parasites through two major steps, phoresy, and necromeny. Models of parasitic evolution are difficult to confirm because they are difficult to test. Like other methods of studying evolution, researchers can make use of genomic data, specifically while comparing data from closely related, non-parasitic species. Parasitism is common, and it is even more common in nematodes, which have evolved into parasitism on up to eighteen separate occasions throughout their evolutionary history. [13] This calls into question what exactly about the nematode leads to such an inclination toward parasitism.
The hypothesis was developed from the observation that roundworms, or nematodes, undergo the same four larval stages, some species only differing by having extra components to their life cycle, leading them to an optional alternative life stage during times of high stress. In some species this alternative stage leads to dormancy, [14] pausing organism development until conditions are more favorable, and in others that alternative stage is used for group dispersion between different habitats through carrier animals. [15] [16] In both of these cases, the alternative stage is called the dauer. In parasitic species of nematodes, this alternative stage is called the “infective juvenile”, and facilitates transmission not between environments, but hosts. All three of these optional stages share the common function of facilitating organism survival under states of high stress during larval stages and are similar in morphology. [17] From this, the Dauer Hypothesis suggests that these three stages are homologous and that the parasitic “infective juvenile” life stage is derived from the ancestral, non-parasitic dauer larva. [18]
Broadly, the Dauer hypothesis applies to all examples of parasitism in Nematoda. Four steps of an evolutionary sequence pathway to animal parasitism have been proposed. [18] The steps are as follows: 1.) Free-living ancestors that do not associate with a larger species, 2) phoretic relationships in which nematodes superficially attach to a larger animal for dispersal, 3) necromeny, in which nematodes may feed on their dead hosts without directly contributing to the death themselves, and 4) parasitism.
The insulin-like growth factors (IGFs) are proteins with high sequence similarity to insulin. IGFs are part of a complex system that cells use to communicate with their physiologic environment. This complex system consists of two cell-surface receptors, two ligands, a family of seven high-affinity IGF-binding proteins, as well as associated IGFBP degrading enzymes, referred to collectively as proteases.
Parasitism is a close relationship between species, where one organism, the parasite, lives on or inside another organism, the host, causing it some harm, and is adapted structurally to this way of life. The entomologist E. O. Wilson characterised parasites as "predators that eat prey in units of less than one". Parasites include single-celled protozoans such as the agents of malaria, sleeping sickness, and amoebic dysentery; animals such as hookworms, lice, mosquitoes, and vampire bats; fungi such as honey fungus and the agents of ringworm; and plants such as mistletoe, dodder, and the broomrapes.
Caenorhabditis elegans is a free-living transparent nematode about 1 mm in length that lives in temperate soil environments. It is the type species of its genus. The name is a blend of the Greek caeno- (recent), rhabditis (rod-like) and Latin elegans (elegant). In 1900, Maupas initially named it Rhabditides elegans. Osche placed it in the subgenus Caenorhabditis in 1952, and in 1955, Dougherty raised Caenorhabditis to the status of genus.
In biology and medicine, a host is a larger organism that harbours a smaller organism; whether a parasitic, a mutualistic, or a commensalist guest (symbiont). The guest is typically provided with nourishment and shelter. Examples include animals playing host to parasitic worms, cells harbouring pathogenic (disease-causing) viruses, or a bean plant hosting mutualistic (helpful) nitrogen-fixing bacteria. More specifically in botany, a host plant supplies food resources to micropredators, which have an evolutionarily stable relationship with their hosts similar to ectoparasitism. The host range is the collection of hosts that an organism can use as a partner.
The DAF-2 gene encodes for the insulin-like growth factor 1 (IGF-1) receptor in the worm Caenorhabditis elegans. DAF-2 is part of the first metabolic pathway discovered to regulate the rate of aging. DAF-2 is also known to regulate reproductive development, resistance to oxidative stress, thermotolerance, resistance to hypoxia, and resistance to bacterial pathogens. Mutations in DAF-2 and also Age-1 have been shown by Cynthia Kenyon to double the lifespan of the worms. In a 2007 episode of WNYC’s Radiolab, Kenyon called DAF-2 "the grim reaper gene.”
Root-knot nematodes are plant-parasitic nematodes from the genus Meloidogyne. They exist in soil in areas with hot climates or short winters. About 2000 plants worldwide are susceptible to infection by root-knot nematodes and they cause approximately 5% of global crop loss. Root-knot nematode larvae infect plant roots, causing the development of root-knot galls that drain the plant's photosynthate and nutrients. Infection of young plants may be lethal, while infection of mature plants causes decreased yield.
A polyphenic trait is a trait for which multiple, discrete phenotypes can arise from a single genotype as a result of differing environmental conditions. It is therefore a special case of phenotypic plasticity.
Caenorhabditis is a genus of nematodes which live in bacteria-rich environments like compost piles, decaying dead animals and rotting fruit. The name comes from Greek: caeno- ; rhabditis = rod-like.
The alae is a protruding ridge that forms longitudinally on many nematodes. In the Caenorhabditis elegans nematode they are present in the L1, dauer and adult stages. The alae are most pronounced during the dauer larval stage and not present in the L2, and L3 C. elegans stages.
The nematodes, roundworms or eelworms constitute the phylum Nematoda. They are a diverse animal phylum inhabiting a broad range of environments. Most species are free-living, feeding on microorganisms, but many species are parasitic. The parasitic worms (helminths) are the cause of soil-transmitted helminthiases.
DAF-16 is the sole ortholog of the FOXO family of transcription factors in the nematode Caenorhabditis elegans. It is responsible for activating genes involved in longevity, lipogenesis, heat shock survival and oxidative stress responses. It also protects C.elegans during food deprivation, causing it to transform into a hibernation - like state, known as a Dauer. DAF-16 is notable for being the primary transcription factor required for the profound lifespan extension observed upon mutation of the insulin-like receptor DAF-2. The gene has played a large role in research into longevity and the insulin signalling pathway as it is located in C. elegans, a successful ageing model organism.
Phoresis or phoresy is a temporary commensalistic relationship when an organism attaches itself to a host organism solely for travel. It has been seen in ticks and mites since the 18th century, and in fossils 320 million years old. It is not restricted to arthropods or animals; plants with seeds that disperse by attaching themselves to animals are also considered to be phoretic.
Caenorhabditis japonica is a species of nematodes in the genus Caenorhabditis. Its genome was sequenced by the McDonnell Genome Institute at Washington University School of Medicine. This gonochoristic species is found in the 'Japonica' group, the sister clade to the 'Elegans' group, in the 'Elegans' supergroup.
Genetics of aging is generally concerned with life extension associated with genetic alterations, rather than with accelerated aging diseases leading to reduction in lifespan.
Pristionchus pacificus is a species of free-living nematodes (roundworms) in the family Diplogastridae. The species has been established as a satellite model organism to Caenorhabditis elegans, with which it shared a common ancestor 200–300 million years ago. The genome of P. pacificus has been fully sequenced, which in combination with other tools for genetic analysis make this species a tractable model in the laboratory, especially for studies of developmental biology.
Caenorhabditis elegans- microbe interactions are defined as any interaction that encompasses the association with microbes that temporarily or permanently live in or on the nematode C. elegans. The microbes can engage in a commensal, mutualistic or pathogenic interaction with the host. These include bacterial, viral, unicellular eukaryotic, and fungal interactions. In nature C. elegans harbours a diverse set of microbes. In contrast, C. elegans strains that are cultivated in laboratories for research purposes have lost the natural associated microbial communities and are commonly maintained on a single bacterial strain, Escherichia coli OP50. However, E. coli OP50 does not allow for reverse genetic screens because RNAi libraries have only been generated in strain HT115. This limits the ability to study bacterial effects on host phenotypes. The host microbe interactions of C. elegans are closely studied because of their orthologs in humans. Therefore, the better we understand the host interactions of C. elegans the better we can understand the host interactions within the human body.
Worm bagging is a form of vivipary observed in nematodes, namely Caenorhabditis elegans. The process is characterized by eggs hatching within the parent and the larvae proceeding to consume and emerge from the parent.
The DAF-12 gene encodes the nuclear receptor of dafachronic acid in the worm Caenorhabditis elegans, with the NRNC Symbol NR1J1 as the homolog of nuclear hormone receptor HR96 in Drosophila melanogaster. DAF-12 has been implicated by Cynthia Kenyon and colleagues in the formation of Dauer larva.
The Daf-9 gene encodes a cytochrome p450 enzyme catalysis the generation of dafachronic acid in the worm Caenorhabditis elegans, with the CYP Symbol CYP22A1. After generation, dafachronic acid will binding it's nuclear receptor Daf-12 and has been implicated by Cynthia Kenyon and colleagues related to the formation of Dauer larva.
Daf-5 is an ortholog of the mammalian protein Sno/Ski,which present in the nematode worm Caenorhabditis elegans on the downstream of TGFβ signaling pathway. Without daf-7 signal, daf-5 combined with daf-3, co-SMAD for C. elegans, to form a heterodimer and started dauer development.