Dauer larva

Last updated

Dauer (German " die Dauer ", English "the enduring", "the duration" in the meaning of "a length of time", [1] ) describes an alternative developmental stage of nematode worms, particularly rhabditids including Caenorhabditis elegans , whereby the larva goes into a type of stasis and can survive harsh conditions. [2] [3] Since the entrance of the dauer stage is dependent on environmental cues, it represents a classic and well studied example of polyphenism. [4] [5] The dauer state is given other names in the various types of nematodes such as ‘diapause’ or ‘hypobiosis’, but since the C. elegans nematode has become the most studied nematode, the term ‘dauer stage’ or 'dauer larvae' is becoming universally recognised when referring to this state in other free-living nematodes. The dauer stage is also considered to be equivalent to the infective stage of parasitic nematode larvae.

Contents

As E. Maupas first proposed in 1899-1900, all nematodes have five stages separated by four moults. [2] Under environmental conditions that are favorable for reproduction, C. elegans larvae develop through four stages or moults which are designated as L1, L2, L3 and L4. After L4, animals moult to the reproductive adult stage. However, when the environment is unfavorable, L1 and L2 animals have the option to divert their development from reproduction to dauer formation. Signals such as temperature, food supply, and levels of a dauer-inducing pheromone, a population density cue, influence this dauer decision. Dauer larvae are thus considered an alternative L3 stage larva, and this stage is sometimes preceded by L2d. L2d animals are considered pre-dauer and are characterised by delayed development and dark intestines produced by storage of fat. L2d larvae can either continue normal development or enter dauer stage depending on whether the conditions that triggered their formation persist. Dauer is not, however, a permanent condition. In fact, if the food supply and the population density become optimal for growth the dauer larvae can exit this stage and become L4s and then adults. [6]

Dauer larvae are extensively studied by biologists because of their ability to survive harsh environments and live for extended periods of time. For example, C. elegans dauer larvae can survive up to four months, much longer than their average lifespan of about three weeks during normal reproductive development. [7] Two genes that are essential for dauer formation are daf-2 and daf-23. [8] Dauer formation in C. elegans requires a nuclear receptor DAF-12 and a forkhead transcription factor DAF-16. In favorable environments, DAF-12 is activated by a steroid hormone, called dafachronic acid, produced by the cytochrome p450, DAF-9. DAF-9 and DAF-12 have been implicated by Cynthia Kenyon and colleagues as being required for extended longevity seen in animals that lack germlines. Kenyon showed that, although the daf-16 gene is required for life extension in C. elegans, the life extension effect can be uncoupled from dauer growth arrest. [9] The lifespan increase was shown to be associated with an increase in stress resistance. [10]

A characteristic of the dauer stage is the pronounced alae which may be implicated in the entering (L1) and exiting (pre adult or L4 in C. elegans) of the dauer stage.

Dauer larvae generally remain motionless, but can react to touch or vibrations. They can stand on their tails, waving their bodies in the air, and attach themselves to any passing animals, particularly insects, enabling them to travel to new food sources. For example, dauer larvae of rhabditids are often found in parallel rows under the elytra of dung beetles, which transport them to fresh supplies of dung. [2] C. elegans strains lacking polyunsaturated fatty acids (PUFAs) undergo increased dauer arrest when grown without cholesterol. A study found endocannabinoids inhibit the dauer formation caused by PUFA deficiency or impaired cholesterol trafficking. [11]

Parasitism in dauer larva

The Dauer Hypothesis

The dauer hypothesis is a theory of evolutionary parasitism, named after the alternative, “dauer” stages of nematode development. It proposes that free-living nematode lineages evolved into parasites through two major steps, phoresy, and necromeny. Models of parasitic evolution are difficult to confirm because they are difficult to test. Like other methods of studying evolution, researchers can make use of genomic data, specifically while comparing data from closely related, non-parasitic species. Parasitism is common, and it is even more common in nematodes, which have evolved into parasitism on up to eighteen separate occasions throughout their evolutionary history. [12] This calls into question what exactly about the nematode leads to such an inclination toward parasitism.

Theory Development

The hypothesis was developed from the observation that roundworms, or nematodes, undergo the same four larval stages, some species only differing by having extra components to their life cycle, leading them to an optional alternative life stage during times of high stress. In some species this alternative stage leads to dormancy, [13] pausing organism development until conditions are more favorable, and in others that alternative stage is used for group dispersion between different habitats through carrier animals. [14] [15] In both of these cases, the alternative stage is called the dauer. In parasitic species of nematodes, this alternative stage is called the “infective juvenile”, and facilitates transmission not between environments, but hosts. All three of these optional stages share the common function of facilitating organism survival under states of high stress during larval stages and are similar in morphology. [16] From this, the Dauer Hypothesis suggests that these three stages are homologous and that the parasitic “infective juvenile” life stage is derived from the ancestral, non-parasitic dauer larva. [17]

A Theory for Parasitic Evolution

Broadly, the Dauer Hypothesis applies to all examples of parasitism in Nematoda. Four steps of an evolutionary sequence pathway to animal parasitism have been proposed. [17] The steps are as follows: 1.) Free-living ancestors that do not associate with a larger species, 2) phoretic relationships in which nematodes superficially attach to a larger animal for dispersal, 3) necromeny, in which nematodes may feed on their dead hosts without directly contributing to the death themselves, and 4) parasitism.




See also

Related Research Articles

<span class="mw-page-title-main">Insulin-like growth factor</span> Proteins similar to insulin that stimulate cell proliferation

The insulin-like growth factors (IGFs) are proteins with high sequence similarity to insulin. IGFs are part of a complex system that cells use to communicate with their physiologic environment. This complex system consists of two cell-surface receptors, two ligands, a family of seven high-affinity IGF-binding proteins, as well as associated IGFBP degrading enzymes, referred to collectively as proteases.

<span class="mw-page-title-main">Parasitism</span> Relationship between species where one organism lives on or in another organism, causing it harm

Parasitism is a close relationship between species, where one organism, the parasite, lives on or inside another organism, the host, causing it some harm, and is adapted structurally to this way of life. The entomologist E. O. Wilson characterised parasites as "predators that eat prey in units of less than one". Parasites include single-celled protozoans such as the agents of malaria, sleeping sickness, and amoebic dysentery; animals such as hookworms, lice, mosquitoes, and vampire bats; fungi such as honey fungus and the agents of ringworm; and plants such as mistletoe, dodder, and the broomrapes.

<i>Caenorhabditis elegans</i> Free-living species of nematode

Caenorhabditis elegans is a free-living transparent nematode about 1 mm in length that lives in temperate soil environments. It is the type species of its genus. The name is a blend of the Greek caeno- (recent), rhabditis (rod-like) and Latin elegans (elegant). In 1900, Maupas initially named it Rhabditides elegans. Osche placed it in the subgenus Caenorhabditis in 1952, and in 1955, Dougherty raised Caenorhabditis to the status of genus.

<span class="mw-page-title-main">Host (biology)</span> Organism that harbours another organism

In biology and medicine, a host is a larger organism that harbours a smaller organism; whether a parasitic, a mutualistic, or a commensalist guest (symbiont). The guest is typically provided with nourishment and shelter. Examples include animals playing host to parasitic worms, cells harbouring pathogenic (disease-causing) viruses, or a bean plant hosting mutualistic (helpful) nitrogen-fixing bacteria. More specifically in botany, a host plant supplies food resources to micropredators, which have an evolutionarily stable relationship with their hosts similar to ectoparasitism. The host range is the collection of hosts that an organism can use as a partner.

The DAF-2 gene encodes for the insulin-like growth factor 1 (IGF-1) receptor in the worm Caenorhabditis elegans. DAF-2 is part of the first metabolic pathway discovered to regulate the rate of aging. DAF-2 is also known to regulate reproductive development, resistance to oxidative stress, thermotolerance, resistance to hypoxia, and resistance to bacterial pathogens. Mutations in DAF-2 and also Age-1 have been shown by Cynthia Kenyon to double the lifespan of the worms. In a 2007 episode of WNYC’s Radiolab, Kenyon called DAF-2 "the grim reaper gene.”

<span class="mw-page-title-main">Root-knot nematode</span> Genus of parasitic worms

Root-knot nematodes are plant-parasitic nematodes from the genus Meloidogyne. They exist in soil in areas with hot climates or short winters. About 2000 plants worldwide are susceptible to infection by root-knot nematodes and they cause approximately 5% of global crop loss. Root-knot nematode larvae infect plant roots, causing the development of root-knot galls that drain the plant's photosynthate and nutrients. Infection of young plants may be lethal, while infection of mature plants causes decreased yield.

<span class="mw-page-title-main">Polyphenism</span> Type of polymorphism where different forms of an animal arise from a single genotype

A polyphenic trait is a trait for which multiple, discrete phenotypes can arise from a single genotype as a result of differing environmental conditions. It is therefore a special case of phenotypic plasticity.

<i>Caenorhabditis</i> Genus of roundworms

Caenorhabditis is a genus of nematodes which live in bacteria-rich environments like compost piles, decaying dead animals and rotting fruit. The name comes from Greek: caeno- ; rhabditis = rod-like.

<span class="mw-page-title-main">Alae (nematode anatomy)</span>

The alae is a protruding ridge that forms longitudinally on many nematodes. In the Caenorhabditis elegans nematode they are present in the L1, dauer and adult stages. The alae are most pronounced during the dauer larval stage and not present in the L2, and L3 C. elegans stages.

<span class="mw-page-title-main">Nematode</span> Phylum of worms

The nematodes, roundworms or eelworms constitute the phylum Nematoda. They are a diverse animal phylum inhabiting a broad range of environments. Most species are free-living, feeding on microorganisms, but there are many that are parasitic. The parasitic worms (helminths) are the cause of soil-transmitted helminthiases.

<span class="mw-page-title-main">Daf-16</span> Ortholog

DAF-16 is the sole ortholog of the FOXO family of transcription factors in the nematode Caenorhabditis elegans. It is responsible for activating genes involved in longevity, lipogenesis, heat shock survival and oxidative stress responses. It also protects C.elegans during food deprivation, causing it to transform into a hibernation - like state, known as a Dauer. DAF-16 is notable for being the primary transcription factor required for the profound lifespan extension observed upon mutation of the insulin-like receptor DAF-2. The gene has played a large role in research into longevity and the insulin signalling pathway as it is located in C. elegans, a successful ageing model organism.

<i>Phasmarhabditis hermaphrodita</i> Species of roundworm

Phasmarhabditis hermaphrodita is a facultative parasitic nematode that can kill slugs and snails. It belongs to the family Rhabditidae, the same family as Caenorhabditis elegans.

<span class="mw-page-title-main">Phoresis</span> Temporary commensalism for transport

Phoresis or phoresy is a non-permanent, commensalistic interaction in which one organism attaches itself to another solely for the purpose of travel. Phoresis has been observed directly in ticks and mites since the 18th century, and indirectly in fossils 320 million years old. It is not restricted to arthropods or animals; plants with seeds that disperse by attaching themselves to animals are also considered to be phoretic.

Caenorhabditis japonica is a species of nematodes in the genus Caenorhabditis. Its genome was sequenced by the McDonnell Genome Institute at Washington University School of Medicine. This gonochoristic species is found in the 'Japonica' group, the sister clade to the 'Elegans' group, in the 'Elegans' supergroup.

<span class="mw-page-title-main">Genetics of aging</span> Overview of the genetics of aging

Genetics of aging is generally concerned with life extension associated with genetic alterations, rather than with accelerated aging diseases leading to reduction in lifespan.

<i>Pristionchus pacificus</i> Species of roundworm

Pristionchus pacificus is a species of free-living nematodes (roundworms) in the family Diplogastridae. The species has been established as a satellite model organism to Caenorhabditis elegans, with which it shared a common ancestor 200–300 million years ago. The genome of P. pacificus has been fully sequenced, which in combination with other tools for genetic analysis make this species a tractable model in the laboratory, especially for studies of developmental biology.

Host microbe interactions in <i>Caenorhabditis elegans</i>

Caenorhabditis elegans- microbe interactions are defined as any interaction that encompasses the association with microbes that temporarily or permanently live in or on the nematode C. elegans. The microbes can engage in a commensal, mutualistic or pathogenic interaction with the host. These include bacterial, viral, unicellular eukaryotic, and fungal interactions. In nature C. elegans harbours a diverse set of microbes. In contrast, C. elegans strains that are cultivated in laboratories for research purposes have lost the natural associated microbial communities and are commonly maintained on a single bacterial strain, Escherichia coli OP50. However, E. coli OP50 does not allow for reverse genetic screens because RNAi libraries have only been generated in strain HT115. This limits the ability to study bacterial effects on host phenotypes. The host microbe interactions of C. elegans are closely studied because of their orthologs in humans. Therefore, the better we understand the host interactions of C. elegans the better we can understand the host interactions within the human body.

Worm bagging is a form of vivipary observed in nematodes, namely Caenorhabditis elegans. The process is characterized by eggs hatching within the parent and the larvae proceeding to consume and emerge from the parent.

The DAF-12 gene encodes the nuclear receptor of dafachronic acid in the worm Caenorhabditis elegans, with the NRNC Symbol NR1J1 as the homolog of nuclear hormone receptor HR96 in Drosophila melanogaster. DAF-12 has been implicated by Cynthia Kenyon and colleagues in the formation of Dauer larva.

Daf-5 is an ortholog of the mammalian protein Sno/Ski,which present in the nematode worm Caenorhabditis elegans on the downstream of TGFβ signaling pathway. Without daf-7 signal, daf-5 combined with daf-3, co-SMAD for C. elegans, to form a heterodimer and started dauer development.

References

  1. Fuchs, Anton Gilbert (1937). Neue parasitische und halbparasitische Nematoden bei Borkenkäfern und einige andere Nematoden[New Parasitic and Half-parasitic Nematodes with Bark-Beetles and Some Other Nematodes] (in German). Fischer.
  2. 1 2 3 Roy C. Anderson (8 February 2000). Nematode Parasites of Vertebrates: Their Development and Transmission. CABI. pp. 4–5. ISBN   978-0-85199-786-5.
  3. Riddle DL, Swanson MM, Albert PS (1981). "Interacting genes in nematode dauer larva formation". Nature . 290 (5808): 668–671. Bibcode:1981Natur.290..668R. doi:10.1038/290668a0. PMID   7219552. S2CID   4255657.
  4. Hu, Patrick J. (2007). "Dauer". WormBook: 1–19. doi:10.1895/wormbook.1.144.1. ISSN   1551-8507. PMC   2890228 . PMID   17988074 . Retrieved 2009-11-05.
  5. Sommer, Ralf J.; Akira Ogawa (September 2011). "Hormone Signaling and Phenotypic Plasticity in Nematode Development and Evolution". Current Biology. 21 (18): R758–R766. doi: 10.1016/j.cub.2011.06.034 . ISSN   0960-9822. PMID   21959166.
  6. RIDDLE, D.. 12 The Dauer Larva. Cold Spring Harbor Monograph Archive, North America, 17 January 1988. Available at: https://cshmonographs.org/index.php/monographs/article/view/5027/4126. Date accessed: 14 July 2016.
  7. Mayer, Melanie G.; Ralf J. Sommer (2011). "Natural variation in Pristionchus pacificus dauer formation reveals cross-preference rather than self-preference of nematode dauer pheromones". Proceedings of the Royal Society B: Biological Sciences. 278 (1719): 2784–2790. doi:10.1098/rspb.2010.2760. PMC   3145190 . PMID   21307052.
  8. Gottlieb S, Ruvkun G (1994). "daf-2, daf-16 and daf-23: genetically interacting genes controlling Dauer formation in Caenorhabditis elegans". Genetics . 137 (1): 107–120. doi:10.1093/genetics/137.1.107. PMC   1205929 . PMID   8056303.
  9. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993). "A C. elegans mutant that lives twice as long as wild type". Nature . 366 (6454): 461–464. Bibcode:1993Natur.366..461K. doi:10.1038/366461a0. PMID   8247153. S2CID   4332206.
  10. Lithgow GJ, White TM, Melov S, Johnson TE (1995). "Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress". Proceedings of the National Academy of Sciences of the United States of America . 92 (16): 7540–7544. Bibcode:1995PNAS...92.7540L. doi: 10.1073/pnas.92.16.7540 . PMC   41375 . PMID   7638227.
  11. Galles, Celina; Prez, Gastón M.; Penkov, Sider; Boland, Sebastian; Porta, Exequiel O. J.; Altabe, Silvia G.; Labadie, Guillermo R.; Schmidt, Ulrike; Knölker, Hans-Joachim (2018-04-23). "Endocannabinoids in Caenorhabditis elegans are essential for the mobilization of cholesterol from internal reserves". Scientific Reports. 8 (1): 6398. Bibcode:2018NatSR...8.6398G. doi:10.1038/s41598-018-24925-8. ISSN   2045-2322. PMC   5913221 . PMID   29686301.
  12. Viney, Mark (June 2017). "How Can We Understand the Genomic Basis of Nematode Parasitism?". Trends in Parasitology. 33 (6): 444–452. doi: 10.1016/j.pt.2017.01.014 . PMC   5449551 . PMID   28274802.
  13. 1 2 Poniar Jr., G.O. (Jan 2018). Taxonomy and biology of Steinernematidae and Heterorhabditidae. CRC Press. pp. 23–58. ISBN   9781351088640 . Retrieved 6 December 2023.
  14. Félix, MA (2010). "The natural history of Caenorhabditis elegans". Current Biology. 20 (22): R965-9. doi: 10.1016/j.cub.2010.09.050 . PMID   21093785. S2CID   12869939 . Retrieved 6 December 2023.
  15. Kiontke, K. "Nematodes". Current Biology. Retrieved 6 December 2023.
  16. 1 2 Crook, Matt (2014). "The dauer hypothesis and the evolution of parasitism: 20 years on and still going strong". International Journal for Parasitology. 44 (1): 1–8. doi:10.1016/j.ijpara.2013.08.004. PMC   3947200 . PMID   24095839.
  17. 1 2 3 Bubrig, Louis (2020). "Caenorhabditis elegans dauers vary recovery in response to bacteria from natural habitat". Ecology and Evolution. 10 (18). Ecology and Evolution Vol. 10: 9886–9895. Bibcode:2020EcoEv..10.9886B. doi:10.1002/ece3.6646. PMC   7520223 . PMID   33005351.
  18. Rebecchi, Lorena (2020). "Extreme-tolerance mechanisms in meiofaunal organisms: a case study with tardigrades, rotifers and nematodes". Hydrobiologia. 847 (12): 2779–2799. doi:10.1007/s10750-019-04144-6. hdl: 11380/1204602 . S2CID   209380774.
  19. Poulin, Robert (2015). "Evolution of parasitism along convergent lines: from ecology to genomics". Parasitology. 142 (Suppl 1). Cambridge University Press: S6–S15. doi:10.1017/S0031182013001674. PMC   4413784 . PMID   24229807.
  20. Anderson, R.C. (1984). "The origins of zooparasitic nematodes". Canadian Journal of Zoology. 62 (3): 317–328. doi:10.1139/z84-050.
  21. Houck, M.A. (1991). "Ecological and Evolutionary Significance of Phoresy in the Astigmata". Annual Review of Entomology. 36. Annual Reviews: 611–636. doi:10.1146/annurev.en.36.010191.003143 . Retrieved 6 December 2023.
  22. Heip, C.H.R (1985). The ecology of marine nematodes. Oceanography and Marine Biology: An Annual Review. pp. 399–489. Retrieved 6 December 2023.
  23. Ludewig, Andreas (2019). "An excreted small molecule promotes C. elegans reproductive development and aging". Nature Chemical Biology. 15 (8): 838–845. doi:10.1038/s41589-019-0321-7. PMC   6650165 . PMID   31320757.
  24. Blaxter, Max (2015). "The evolution of parasitism in Nematoda". Parasitology. 142 (Suppl 1). Cambridge University Press: S26–S39. doi:10.1017/S0031182014000791. PMC   4413787 . PMID   24963797.