Lysophosphatidylcholine

Last updated
General chemical structure of lysophosphatidylcholines, where R is a variable fatty acid chain Structure lysophosphatidylcholine.svg
General chemical structure of lysophosphatidylcholines, where R is a variable fatty acid chain

Lysophosphatidylcholines (LPC, lysoPC), also called lysolecithins, are a class of chemical compounds which are derived from phosphatidylcholines. [1]

Contents

Overview

Lysophosphatidylcholines are produced within cells mainly by the enzyme phospholipase A2, which removes one of the fatty acid groups from phosphatidylcholine to produce LPC. [2] Among other properties, they activate endothelial cells during early atherosclerosis. [3] [4] LPC also acts as a find-me signal, released by apoptotic cells to recruit phagocytes, which then phagocytose the apoptotic cells [5] Moreover, LPCs can be used in the lab to cause demyelination of brain slices, to mimic the effects of demyelinating diseases such as multiple sclerosis. Further, they are known to stimulate phagocytosis of the myelin sheath and can change the surface properties of erythrocytes. [6] LPC-induced demyelination is thought to occur through the actions of recruited macrophages and microglia which phagocytose nearby myelin. Invading T cells are also thought to mediate this process. Bacteria such as Legionella pneumophila utilize phospholipase A2 end-products (fatty acids and lysophospholipids) to cause host cell (macrophage) apoptosis through cytochrome C release.

LPCs are present as minor phospholipids in the cell membrane (≤ 3%) and in the blood plasma (8–12%). [6] Since LPCs are quickly metabolized by lysophospholipase and LPC-acyltransferase, they last only shortly in vivo. By replacing the acyl-group within the LPC with an alkyl-group, alkyl-lysophospholipids (ALP) were synthesized. These LPC analogues are metabolically stable, and several such as edelfosine, miltefosine and perifosine are under research and development as drugs against cancer and other diseases. [6] [7] Lysophosphatidylcholine processing has been discovered to be an essential component of normal human brain development: those born with genes that prevent adequate uptake suffer from lethal microcephaly. [8] MFSD2a has been shown to transport LPC-bound polyunsaturated fatty acids, including DHA and EPA, across the blood-brain and blood-retinal barriers. [9] [10]

LPCs occur in many foods naturally. According to the third edition of Starch: Chemistry and Technology, lysophosphatidylcholine makes up about 70% of the lipids in oat starch (p.592). [11]

The anti-cancer abilities of synthetic LPC variants are special since they do not target the cell DNA but insert into the plasma membrane and cause apoptosis through influencing several signal pathways. Therefore, their effects are independent of the proliferation state of the tumor cell. [12]

Industrial Applications of Enzymes Producing Lysophosphatidylcholine

FoodPro LysoMaxa Oil is an FDA approved commercialized PLA2 enzyme preparation utilized for the degumming of vegetable oils in large-scale productions to increase yield. Variants of lysophosphatidylcholine are the main products of this enzyme. [13] Lysophosphatidylcholine has been studied as an immune activator for differentiating monocytes to mature dendritic cells. [14] Lysophosphatidylcholine present in blood amplifies microbial TLR ligands induced inflammatory responses from human cells like intestinal epithelial cells and macrophages/monocytes. [15] This has an implication in sepsis induced by microbes.

Composition in Foods

Lysophosphatidylcholine accounts for 4.6% of phospholipids found in coconut oil, which make up 0.2% of lipids in coconut oil. In contrast, vegetable oils contain about 2-3% phospholipids. [16]

Lysophosphatidylcholine and Atherosclerosis

Intima-media thickness, which is positively correlated with reduced blood flow, was studied in young smokers. Evidence pointed towards smoking as a major risk factor for increased levels of PLA2, due to tobacco smoke's impact on oxidation of retained LDL particles in the intima of a carotid artery, [17] which may have a detrimental impact on overall health.

See also

Related Research Articles

<span class="mw-page-title-main">Phospholipid</span> Class of lipids

Phospholipids are a class of lipids whose molecule has a hydrophilic "head" containing a phosphate group and two hydrophobic "tails" derived from fatty acids, joined by an alcohol residue. Marine phospholipids typically have omega-3 fatty acids EPA and DHA integrated as part of the phospholipid molecule. The phosphate group can be modified with simple organic molecules such as choline, ethanolamine or serine.

<span class="mw-page-title-main">Phosphatidylcholine</span> Class of phospholipids

Phosphatidylcholines (PC) are a class of phospholipids that incorporate choline as a headgroup. They are a major component of biological membranes and can be easily obtained from a variety of readily available sources, such as egg yolk or soybeans, from which they are mechanically or chemically extracted using hexane. They are also a member of the lecithin group of yellow-brownish fatty substances occurring in animal and plant tissues. Dipalmitoylphosphatidylcholine (lecithin) is a major component of the pulmonary surfactant, and is often used in the lecithin–sphingomyelin ratio to calculate fetal lung maturity. While phosphatidylcholines are found in all plant and animal cells, they are absent in the membranes of most bacteria, including Escherichia coli. Purified phosphatidylcholine is produced commercially.

Phosphatidic acids are anionic phospholipids important to cell signaling and direct activation of lipid-gated ion channels. Hydrolysis of phosphatidic acid gives rise to one molecule each of glycerol and phosphoric acid and two molecules of fatty acids. They constitute about 0.25% of phospholipids in the bilayer.

Phospholipase A<sub>2</sub> Peripheral membrane protein

The enzyme phospholipase A2 (EC 3.1.1.4, PLA2, systematic name phosphatidylcholine 2-acylhydrolase) catalyses the cleavage of fatty acids in position 2 of phospholipids, hydrolyzing the bond between the second fatty acid “tail” and the glycerol molecule:

Platelet-activating factor, also known as PAF, PAF-acether or AGEPC (acetyl-glyceryl-ether-phosphorylcholine), is a potent phospholipid activator and mediator of many leukocyte functions, platelet aggregation and degranulation, inflammation, and anaphylaxis. It is also involved in changes to vascular permeability, the oxidative burst, chemotaxis of leukocytes, as well as augmentation of arachidonic acid metabolism in phagocytes.

<span class="mw-page-title-main">Phospholipid scramblase</span> Protein

Scramblase is a protein responsible for the translocation of phospholipids between the two monolayers of a lipid bilayer of a cell membrane. In humans, phospholipid scramblases (PLSCRs) constitute a family of five homologous proteins that are named as hPLSCR1–hPLSCR5. Scramblases are members of the general family of transmembrane lipid transporters known as flippases. Scramblases are distinct from flippases and floppases. Scramblases, flippases, and floppases are three different types of enzymatic groups of phospholipid transportation enzymes. The inner-leaflet, facing the inside of the cell, contains negatively charged amino-phospholipids and phosphatidylethanolamine. The outer-leaflet, facing the outside environment, contains phosphatidylcholine and sphingomyelin. Scramblase is an enzyme, present in the cell membrane, that can transport (scramble) the negatively charged phospholipids from the inner-leaflet to the outer-leaflet, and vice versa.

<span class="mw-page-title-main">Lipid signaling</span> Biological signaling using lipid molecules

Lipid signaling, broadly defined, refers to any biological cell signaling event involving a lipid messenger that binds a protein target, such as a receptor, kinase or phosphatase, which in turn mediate the effects of these lipids on specific cellular responses. Lipid signaling is thought to be qualitatively different from other classical signaling paradigms because lipids can freely diffuse through membranes. One consequence of this is that lipid messengers cannot be stored in vesicles prior to release and so are often biosynthesized "on demand" at their intended site of action. As such, many lipid signaling molecules cannot circulate freely in solution but, rather, exist bound to special carrier proteins in serum.

Phospholipase D (EC 3.1.4.4, lipophosphodiesterase II, lecithinase D, choline phosphatase, PLD; systematic name phosphatidylcholine phosphatidohydrolase) is an enzyme of the phospholipase superfamily that catalyses the following reaction

Phospholipase A<sub>1</sub> Mammalian protein found in Homo Sapiens

Phospholipase A1 (EC 3.1.1.32; systematic name: phosphatidylcholine 1-acylhydrolase) encoded by the PLA1A gene is a phospholipase enzyme which removes the 1-acyl group:

The lysophospholipid receptor (LPL-R) group are members of the G protein-coupled receptor family of integral membrane proteins that are important for lipid signaling. In humans, there are eleven LPL receptors, each encoded by a separate gene. These LPL receptor genes are also sometimes referred to as "Edg".

<span class="mw-page-title-main">S1PR3</span> Protein and coding gene in humans

Sphingosine-1-phosphate receptor 3 also known as S1PR3 is a human gene which encodes a G protein-coupled receptor which binds the lipid signaling molecule sphingosine 1-phosphate (S1P). Hence this receptor is also known as S1P3.

<span class="mw-page-title-main">GPR132</span> Protein-coding gene in the species Homo sapiens

G protein coupled receptor 132, also termed G2A, is classified as a member of the proton sensing G protein coupled receptor (GPR) subfamily. Like other members of this subfamily, i.e. GPR4, GPR68 (OGR1), and GPR65 (TDAG8), G2A is a G protein coupled receptor that resides in the cell surface membrane, senses changes in extracellular pH, and can alter cellular function as a consequence of these changes. Subsequently, G2A was suggested to be a receptor for lysophosphatidylcholine (LPC). However, the roles of G2A as a pH-sensor or LPC receptor are disputed. Rather, current studies suggest that it is a receptor for certain metabolites of the polyunsaturated fatty acid, linoleic acid.

The enzyme lysophospholipase (EC 3.1.1.5) catalyzes the reaction

<span class="mw-page-title-main">PLA2G4A</span> Protein-coding gene in the species Homo sapiens

Cytosolic phospholipase A2 is an enzyme that in humans is encoded by the PLA2G4A gene.

<span class="mw-page-title-main">PLA2G5</span> Protein-coding gene in the species Homo sapiens

Calcium-dependent phospholipase A2 is an enzyme that in humans is encoded by the PLA2G5 gene.

<span class="mw-page-title-main">Phosphatidylcholine transfer protein</span> Intracellular phospholipid binding protein

Phosphatidylcholine transfer protein (PCTP), also known as StAR-related lipid transfer domain protein 2 (STARD2), is a specific intracellular phospholipid binding protein that can transfer phosphatidylcholine between different membranes in the cytosol.

Edelfosine is a synthetic alkyl-lysophospholipid (ALP). It has antineoplastic (anti-cancer) effects.

<span class="mw-page-title-main">1-Lysophosphatidylcholine</span>

1-Lysophosphatidylcholines are a class of phospholipids that are intermediates in the metabolism of lipids. They result from the hydrolysis of an acyl group from the sn-1 position of phosphatidylcholine. They are also called 2-acyl-sn-glycero-3-phosphocholines. The synthesis of phosphatidylcholines with specific fatty acids occurs through the synthesis of 1-lysoPC. The formation of various other lipids generates 1-lysoPC as a by-product.

<span class="mw-page-title-main">13-Hydroxyoctadecadienoic acid</span> Chemical compound

13-Hydroxyoctadecadienoic acid (13-HODE) is the commonly used term for 13(S)-hydroxy-9Z,11E-octadecadienoic acid (13(S)-HODE). The production of 13(S)-HODE is often accompanied by the production of its stereoisomer, 13(R)-hydroxy-9Z,11E-octadecadienoic acid (13(R)-HODE). The adjacent figure gives the structure for the (S) stereoisomer of 13-HODE. Two other naturally occurring 13-HODEs that may accompany the production of 13(S)-HODE are its cis-trans (i.e., 9E,11E) isomers viz., 13(S)-hydroxy-9E,11E-octadecadienoic acid (13(S)-EE-HODE) and 13(R)-hydroxy-9E,11E-octadecadienoic acid (13(R)-EE-HODE). Studies credit 13(S)-HODE with a range of clinically relevant bioactivities; recent studies have assigned activities to 13(R)-HODE that differ from those of 13(S)-HODE; and other studies have proposed that one or more of these HODEs mediate physiological and pathological responses, are markers of various human diseases, and/or contribute to the progression of certain diseases in humans. Since, however, many studies on the identification, quantification, and actions of 13(S)-HODE in cells and tissues have employed methods that did not distinguish between these isomers, 13-HODE is used here when the actual isomer studied is unclear.

<span class="mw-page-title-main">9-Hydroxyoctadecadienoic acid</span> Chemical compound

9-Hydroxyoctadecadienoic acid (or 9-HODE) has been used in the literature to designate either or both of two stereoisomer metabolites of the essential fatty acid, linoleic acid: 9(S)-hydroxy-10(E),12(Z)-octadecadienoic acid (9(S)-HODE) and 9(R)-hydroxy-10(E),12(Z)-octadecadienoic acid (9(R)-HODE); these two metabolites differ in having their hydroxy residues in the S or R configurations, respectively. The accompanying figure gives the structure for 9(S)-HETE. Two other 9-hydroxy linoleic acid derivatives occur in nature, the 10E,12E isomers of 9(S)-HODE and 9(R)-HODE viz., 9(S)-hydroxy-10E,12E-octadecadienoic acid (9(S)-EE-HODE) and 9(R)-hydroxy-10E,12E-octadecadienoic acid (13(R)-EE-HODE); these two derivatives have their double bond at carbon 12 in the E or trans configuration as opposed to the Z or cis configuration. The four 9-HODE isomers, particularly under conditions of oxidative stress, may form together in cells and tissues; they have overlapping but not identical biological activities and significances. Because many studies have not distinguished between the S and R stereoisomers and, particularly in identifying tissue levels, the two EE isomers, 9-HODE is used here when the isomer studied is unclear.

References

  1. Li X, Wang L, Fang P, et al. (May 2018). "Lysophospholipids induce innate immune transdifferentiation of endothelial cells, resulting in prolonged endothelial activation". The Journal of Biological Chemistry. 293 (28): 11033–11045. doi: 10.1074/jbc.RA118.002752 . PMC   6052225 . PMID   29769317.
  2. Phosphatidylcholine and related lipids Archived 2009-05-31 at the Wayback Machine , lipidlibrary.co.uk
  3. Li X, Fang P, et al. (April 2016). "Mitochondrial Reactive Oxygen Species Mediate Lysophosphatidylcholine-Induced Endothelial Cell Activation". Arteriosclerosis, Thrombosis, and Vascular Biology. 36 (6): 1090–100. doi:10.1161/ATVBAHA.115.306964. PMC   4882253 . PMID   27127201.
  4. Li X, Shao Y, Fang P, et al. (March 2018). "IL-35 (Interleukin-35) Suppresses Endothelial Cell Activation by Inhibiting Mitochondrial Reactive Oxygen Species-Mediated Site-Specific Acetylation of H3K14 (Histone 3 Lysine 14)". Arteriosclerosis, Thrombosis, and Vascular Biology. 38 (3): 599–609. doi:10.1161/ATVBAHA.117.310626. PMC   5823772 . PMID   29371247.
  5. Lauber K, Bohn, E, Kröber, SM, Xiao, Y (2003). "Apoptotic Cells Induce Migration of Phagocytes via Caspase-3-Mediated Release of a Lipid Attraction Signal". Cell. 113 (6): 717–730. doi: 10.1016/S0092-8674(03)00422-7 . PMID   12809603. S2CID   17619382.
  6. 1 2 3 Munder PG, Modolell M, Andreesen R, Weltzien HU, Westphal O (1979). "Lysophosphatidylcholine (Lysolecithin) and its Synthetic Analogues. Immunemodulating and Other Biologic Effects". Springer Seminars in Immunopathology. 203 (2): 187–203. doi:10.1007/bf01891668. S2CID   42907729.
  7. Houlihan W, Lohmeyer M, Workman P, Cheon SH (1995). "Phospholipid antitumor agents". Medicinal Research Reviews. 15 (3): 157–223. doi:10.1002/med.2610150302. PMID   7658750. S2CID   6997551.
  8. Guemez-Gamboa A, N Nguyen, Hongbo Yan (2015). "Inactivating mutations in MFSD2A, required for omega-3 fatty acid transport in brain, cause a lethal microcephaly syndrome". Nature Genetics. 47 (7): 809–813. doi:10.1038/ng.3311. PMC   4547531 . PMID   26005868.
  9. Nguyen LN, Ma D, Shui G, Wong P, Cazenave-Gassiot A, Zhang X, Wenk MR, Goh E, Silver DL (2014-05-22). "Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid". Nature. 509 (7501): 503–506. Bibcode:2014Natur.509..503N. doi:10.1038/nature13241. PMID   24828044. S2CID   4462512.
  10. Wong BH, Chan JP, Cazenave-Gassiot A, Poh RW, Foo JC, Galam D, Gosh S, Nguyen LN, Barathi VA, Yeo SW, Luu CD, Wenk MR, Silver DL (2016). "Mfsd2a Is a Transporter for the Essential ω-3 Fatty Acid Docosahexaenoic Acid (DHA) in Eye and Is Important for Photoreceptor Cell Development". J Biol Chem. 291 (20): 10501–14. doi: 10.1074/jbc.M116.721340 . PMC   4865901 . PMID   27008858.
  11. Bemiller JN, Whistler RL (2009-04-06). Starch. Academic Press. ISBN   9780080926551.
  12. van Blitterswijk W, Verheij M (2008). "Anticancer alkylphospholipids: mechanisms of action, cellular sensitivity and resistance, and clinical prospects". Current Pharmaceutical Design. 14 (21): 2061–74. doi:10.2174/138161208785294636. PMID   18691116.
  13. Michael Eskin NA, Shahidi F (2012-10-08). Biochemistry of Foods. Academic Press. ISBN   9780080918099.
  14. "Patent US20110135684 - Use of L-alpha-lysophosphatidylcholine to obtain the differentiation of..." google.com.mx.
  15. Sharma N, Akhade AS, Ismaeel S, Qadri A (2020). "Serum-borne lipids amplify TLR-activated inflammatory responses". Journal of Leukocyte Biology. 109 (4): 821–831. doi:10.1002/JLB.3AB0720-241RR. PMID   32717772. S2CID   220842161.
  16. "Rahman's page 12 chart" (PDF). Archived from the original (PDF) on 2014-03-28.
  17. Fratta Pasini A, Stranieri C, Pasini A, Vallerio P, Mozzini C, Solani E, Cominacini M, Cominacini L, Garbin U (2013). "Lysophosphatidylcholine and Carotid Intima-Media Thickness in Young Smokers: A Role for Oxidized LDL-Induced Expression of PBMC Lipoprotein-Associated Phospholipase A2?". PLOS ONE. 8 (12): e83092. Bibcode:2013PLoSO...883092F. doi: 10.1371/journal.pone.0083092 . PMC   3866188 . PMID   24358251.