Palmitoyl-CoA

Last updated
Palmitoyl-CoA
Palmitoyl coenzyme A.svg
Names
IUPAC name
3′-O-Phosphonoadenosine 5′-{(3R)-4-[(3-{[2-(hexadecanoylsulfanyl)ethyl]amino}-3-oxopropyl)amino]-3-hydroxy-2,2-dimethyl-4-oxobutyl dihydrogen diphosphate}
Systematic IUPAC name
O1-{[(2R,3S,4R,5R)-5-(6-Amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methyl} O3-{(3R)-4-[(3-{[2-(hexadecanoylsulfanyl)ethyl]amino}-3-oxopropyl)amino]-3-hydroxy-2,2-dimethyl-4-oxobutyl} dihydrogen diphosphate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.015.616 OOjs UI icon edit-ltr-progressive.svg
KEGG
MeSH Palmitoyl+Coenzyme+A
PubChem CID
  • InChI=1S/C37H66N7O17P3S/c1-4-5-6-7-8-9-10-11-12-13-14-15-16-17-28(46)65-21-20-39-27(45)18-19-40-35(49)32(48)37(2,3)23-58-64(55,56)61-63(53,54)57-22-26-31(60-62(50,51)52)30(47)36(59-26)44-25-43-29-33(38)41-24-42-34(29)44/h24-26,30-32,36,47-48H,4-23H2,1-3H3,(H,39,45)(H,40,49)(H,53,54)(H,55,56)(H2,38,41,42)(H2,50,51,52)/t26-,30-,31-,32+,36-/m1/s1 X mark.svgN
    Key: MNBKLUUYKPBKDU-BBECNAHFSA-N X mark.svgN
  • InChI=1/C37H66N7O17P3S/c1-4-5-6-7-8-9-10-11-12-13-14-15-16-17-28(46)65-21-20-39-27(45)18-19-40-35(49)32(48)37(2,3)23-58-64(55,56)61-63(53,54)57-22-26-31(60-62(50,51)52)30(47)36(59-26)44-25-43-29-33(38)41-24-42-34(29)44/h24-26,30-32,36,47-48H,4-23H2,1-3H3,(H,39,45)(H,40,49)(H,53,54)(H,55,56)(H2,38,41,42)(H2,50,51,52)/t26-,30-,31-,32+,36-/m1/s1
    Key: MNBKLUUYKPBKDU-BBECNAHFBL
  • CCCCCCCCCCCCCCCC(=O)SCCNC(=O)CCNC(=O)[C@@H](C(C)(C)COP(=O)(O)OP(=O)(O)OC[C@@H]1[C@H]([C@H]([C@@H](O1)n2cnc3c2ncnc3N)O)OP(=O)(O)O)O
Properties
C37H66N7O17P3S
Molar mass 1005.95 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Palmitoyl-CoA is an acyl-CoA thioester. It is an "activated" form of palmitic acid and can be transported into the mitochondrial matrix by the carnitine shuttle system (which transports fatty acyl-CoA molecules into the mitochondria), and once inside can participate in beta-oxidation. Alternatively, palmitoyl-CoA is used as a substrate in the biosynthesis of sphingosine (this biosynthetic pathway does not require transfer into the mitochondria). [1] [2]

Contents

Biosynthesis

Palmitoyl CoA formed from palmitic acid, in the reaction below. [3]

Palmitate + CoA-SH + ATP → Palmitoyl-CoA + AMP + Pyrophosphate

This reaction is often referred to as the "activation" of a fatty acid. The activation is catalyzed by palmitoyl-coenzyme A synthetase and the reaction proceeds through a two step mechanism, in which palmitoyl-AMP is an intermediate. [4] The reaction is driven to completion by the exergonic hydrolysis of pyrophosphate. [3]

The activation of fatty acids occurs in the cytosol and beta-oxidation occurs in the mitochondria. However, long chain fatty acyl-CoA cannot cross the mitochondrial membrane. If palmitoyl-CoA is to enter the mitochondria, it must react with carnitine in order to be transported across:

Palmitoyl-CoA + Carnitine ⇌ Palmitoyl-Carnitine + CoA-SH

This transesterification reaction is catalyzed by carnitine palmitoyl transferase. [5] Palmitoyl-Carnitine may translocate across the membrane, and once on matrix side, the reaction proceeds in reverse as CoA-SH is recombined with palmitoyl-CoA, and released. Unattached carnitine is then shuttled back to the cytosolic side of mitochondrial membrane.

Beta-oxidation

Once inside the mitochondrial matrix, palmitoyl-CoA may undergo β-oxidation. The full oxidation of palmitic acid (or palmitoyl-CoA) results in 8 acetyl-CoA's, 7 NADH, 7 H+, and 7 FADH2. [6] The full reaction is below:

Palmitoyl-CoA + 7 CoA-SH + 7 NAD+ + 7 FAD → 8 Acetyl-CoA + 7 NADH + 7 H+ + 7 FADH2

Sphingolipid biosynthesis

Palmitoyl-CoA is also the starting substrate, along with serine, for sphingolipid biosynthesis. Palmitoyl CoA and serine participate in a condensation reaction catalyzed by serine C-palmitoyltransferase (SPT), in which 3-ketosphinganine is formed. These reactions occur in the cytosol. [7]

Sphingosine synthesis Sphingosine synthesis corrected.png
Sphingosine synthesis

Additional images

See also

Related Research Articles

<span class="mw-page-title-main">Coenzyme A</span> Coenzyme, notable for its synthesis and oxidation role

Coenzyme A (CoA, SHCoA, CoASH) is a coenzyme, notable for its role in the synthesis and oxidation of fatty acids, and the oxidation of pyruvate in the citric acid cycle. All genomes sequenced to date encode enzymes that use coenzyme A as a substrate, and around 4% of cellular enzymes use it (or a thioester) as a substrate. In humans, CoA biosynthesis requires cysteine, pantothenate (vitamin B5), and adenosine triphosphate (ATP).

<span class="mw-page-title-main">Acetyl-CoA</span> Chemical compound

Acetyl-CoA is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. Its main function is to deliver the acetyl group to the citric acid cycle to be oxidized for energy production.

<span class="mw-page-title-main">Carnitine</span> Amino acid active in mitochondria

Carnitine is a quaternary ammonium compound involved in metabolism in most mammals, plants, and some bacteria. In support of energy metabolism, carnitine transports long-chain fatty acids from the cytosol into mitochondria to be oxidized for free energy production, and also participates in removing products of metabolism from cells. Given its key metabolic roles, carnitine is concentrated in tissues like skeletal and cardiac muscle that metabolize fatty acids as an energy source. Generally individuals, including strict vegetarians, synthesize enough L-carnitine in vivo.

<span class="mw-page-title-main">Sphingolipid</span> Family of chemical compounds

Sphingolipids are a class of lipids containing a backbone of sphingoid bases, which are a set of aliphatic amino alcohols that includes sphingosine. They were discovered in brain extracts in the 1870s and were named after the mythological sphinx because of their enigmatic nature. These compounds play important roles in signal transduction and cell recognition. Sphingolipidoses, or disorders of sphingolipid metabolism, have particular impact on neural tissue. A sphingolipid with a terminal hydroxyl group is a ceramide. Other common groups bonded to the terminal oxygen atom include phosphocholine, yielding a sphingomyelin, and various sugar monomers or dimers, yielding cerebrosides and globosides, respectively. Cerebrosides and globosides are collectively known as glycosphingolipids.

Biosynthesis, i.e., chemical synthesis occurring in biological contexts, is a term most often referring to multi-step, enzyme-catalyzed processes where chemical substances absorbed as nutrients serve as enzyme substrates, with conversion by the living organism either into simpler or more complex products. Examples of biosynthetic pathways include those for the production of amino acids, lipid membrane components, and nucleotides, but also for the production of all classes of biological macromolecules, and of acetyl-coenzyme A, adenosine triphosphate, nicotinamide adenine dinucleotide and other key intermediate and transactional molecules needed for metabolism. Thus, in biosynthesis, any of an array of compounds, from simple to complex, are converted into other compounds, and so it includes both the catabolism and anabolism of complex molecules. Biosynthetic processes are often represented via charts of metabolic pathways. A particular biosynthetic pathway may be located within a single cellular organelle, while others involve enzymes that are located across an array of cellular organelles and structures.

<span class="mw-page-title-main">Mitochondrial matrix</span> Space within the inner membrane of the mitochondrion

In the mitochondrion, the matrix is the space within the inner membrane. The word "matrix" stems from the fact that this space is viscous, compared to the relatively aqueous cytoplasm. The mitochondrial matrix contains the mitochondrial DNA, ribosomes, soluble enzymes, small organic molecules, nucleotide cofactors, and inorganic ions.[1] The enzymes in the matrix facilitate reactions responsible for the production of ATP, such as the citric acid cycle, oxidative phosphorylation, oxidation of pyruvate, and the beta oxidation of fatty acids.

Fatty acid metabolism consists of various metabolic processes involving or closely related to fatty acids, a family of molecules classified within the lipid macronutrient category. These processes can mainly be divided into (1) catabolic processes that generate energy and (2) anabolic processes where they serve as building blocks for other compounds.

In biochemistry and metabolism, beta oxidation (also β-oxidation) is the catabolic process by which fatty acid molecules are broken down in the cytosol in prokaryotes and in the mitochondria in eukaryotes to generate acetyl-CoA. Acetyl-CoA enters the citric acid cycle, generating NADH and FADH2, which are electron carriers used in the electron transport chain. It is named as such because the beta carbon of the fatty acid chain undergoes oxidation and is converted to a carbonyl group to start the cycle all over again. Beta-oxidation is primarily facilitated by the mitochondrial trifunctional protein, an enzyme complex associated with the inner mitochondrial membrane, although very long chain fatty acids are oxidized in peroxisomes.

<span class="mw-page-title-main">Ceramide</span> Family of waxy lipid molecules

Ceramides are a family of waxy lipid molecules. A ceramide is composed of sphingosine and a fatty acid joined by an amide bond. Ceramides are found in high concentrations within the cell membrane of eukaryotic cells, since they are component lipids that make up sphingomyelin, one of the major lipids in the lipid bilayer. Contrary to previous assumptions that ceramides and other sphingolipids found in cell membrane were purely supporting structural elements, ceramide can participate in a variety of cellular signaling: examples include regulating differentiation, proliferation, and programmed cell death (PCD) of cells.

<span class="mw-page-title-main">Palmitoylcarnitine</span> Chemical compound

Palmitoylcarnitine is an ester derivative of carnitine involved in the metabolism of fatty acids. During the tricarboxylic acid cycle (TCA), fatty acids undergo a process known as β-oxidation to produce energy in the form of ATP. β-oxidation occurs primarily within mitochondria, however the mitochondrial membrane prevents the entry of long chain fatty acids (>C10), so the conversion of fatty acids such as palmitic acid is key. Palmitic acid is brought to the cell and once inside the cytoplasm is first converted to Palmitoyl-CoA. Palmitoyl-CoA has the ability to freely pass the outer mitochondrial membrane, but the inner membrane is impermeable to the Acyl-CoA and thioester forms of various long-chain fatty acids such as palmitic acid. The palmitoyl-CoA is then enzymatically transformed into palmitoylcarnitine via the Carnitine O-palmitoyltransferase family. The palmitoylcarnitine is then actively transferred into the inner membrane of the mitochondria via the carnitine-acylcarnitine translocase. Once inside the inner mitochondrial membrane, the same Carnitine O-palmitoyltransferase family is then responsible for transforming the palmitoylcarnitine back to the palmitoyl-CoA form.

Lipid metabolism is the synthesis and degradation of lipids in cells, involving the breakdown and storage of fats for energy and the synthesis of structural and functional lipids, such as those involved in the construction of cell membranes. In animals, these fats are obtained from food and are synthesized by the liver. Lipogenesis is the process of synthesizing these fats. The majority of lipids found in the human body from ingesting food are triglycerides and cholesterol. Other types of lipids found in the body are fatty acids and membrane lipids. Lipid metabolism is often considered the digestion and absorption process of dietary fat; however, there are two sources of fats that organisms can use to obtain energy: from consumed dietary fats and from stored fat. Vertebrates use both sources of fat to produce energy for organs such as the heart to function. Since lipids are hydrophobic molecules, they need to be solubilized before their metabolism can begin. Lipid metabolism often begins with hydrolysis, which occurs with the help of various enzymes in the digestive system. Lipid metabolism also occurs in plants, though the processes differ in some ways when compared to animals. The second step after the hydrolysis is the absorption of the fatty acids into the epithelial cells of the intestinal wall. In the epithelial cells, fatty acids are packaged and transported to the rest of the body.

<span class="mw-page-title-main">Acyl-CoA</span> Group of coenzymes that metabolize fatty acids

Acyl-CoA is a group of coenzymes that metabolize carboxylic acids. Fatty acyl-CoA's are susceptible to beta oxidation, forming, ultimately, acetyl-CoA. The acetyl-CoA enters the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP, the common biochemical energy carrier.

In biochemistry, fatty acid synthesis is the creation of fatty acids from acetyl-CoA and NADPH through the action of enzymes called fatty acid synthases. This process takes place in the cytoplasm of the cell. Most of the acetyl-CoA which is converted into fatty acids is derived from carbohydrates via the glycolytic pathway. The glycolytic pathway also provides the glycerol with which three fatty acids can combine to form triglycerides, the final product of the lipogenic process. When only two fatty acids combine with glycerol and the third alcohol group is phosphorylated with a group such as phosphatidylcholine, a phospholipid is formed. Phospholipids form the bulk of the lipid bilayers that make up cell membranes and surrounds the organelles within the cells. In addition to cytosolic fatty acid synthesis, there is also mitochondrial fatty acid synthesis (mtFASII), in which malonyl-CoA is formed from malonic acid with the help of malonyl-CoA synthetase (ACSF3), which then becomes the final product octanoyl-ACP (C8) via further intermediate steps.

Fatty acid degradation is the process in which fatty acids are broken down into their metabolites, in the end generating acetyl-CoA, the entry molecule for the citric acid cycle, the main energy supply of living organisms, including bacteria and animals. It includes three major steps:

<span class="mw-page-title-main">Long-chain-fatty-acid—CoA ligase</span> Class of enzymes

The long chain fatty acyl-CoA ligase is an enzyme of the ligase family that activates the oxidation of complex fatty acids. Long chain fatty acyl-CoA synthetase catalyzes the formation of fatty acyl-CoA by a two-step process proceeding through an adenylated intermediate. The enzyme catalyzes the following reaction,

<span class="mw-page-title-main">Carnitine palmitoyltransferase I</span> Enzyme found in humans

Carnitine palmitoyltransferase I (CPT1) also known as carnitine acyltransferase I, CPTI, CAT1, CoA:carnitine acyl transferase (CCAT), or palmitoylCoA transferase I, is a mitochondrial enzyme responsible for the formation of acyl carnitines by catalyzing the transfer of the acyl group of a long-chain fatty acyl-CoA from coenzyme A to l-carnitine. The product is often palmitoylcarnitine, but other fatty acids may also be substrates. It is part of a family of enzymes called carnitine acyltransferases. This "preparation" allows for subsequent movement of the acyl carnitine from the cytosol into the intermembrane space of mitochondria.

Palmitoyl-CoA hydrolase (EC 3.1.2.2) is an enzyme in the family of hydrolases that specifically acts on thioester bonds. It catalyzes the hydrolysis of long chain fatty acyl thioesters of acyl carrier protein or coenzyme A to form free fatty acid and the corresponding thiol:

<span class="mw-page-title-main">Carnitine O-octanoyltransferase</span>

Carnitine O-octanoyltransferase is a member of the transferase family, more specifically a carnitine acyltransferase, a type of enzyme which catalyzes the transfer of acyl groups from acyl-CoAs to carnitine, generating CoA and an acyl-carnitine. Specifically, CROT catalyzes the chemical reaction:

Long-chain acyl-CoA dehydrogenase is an enzyme with systematic name long-chain acyl-CoA:electron-transfer flavoprotein 2,3-oxidoreductase. This enzyme catalyses the following chemical reaction

Fatty acyl-CoA esters are fatty acid derivatives formed of one fatty acid, a 3'-phospho-AMP linked to phosphorylated pantothenic acid (vitamin B5) and cysteamine.

References

  1. Brady, R.N.; DiMari, S.J.; Snell, E.E. (1969). "Biosynthesis of sphingolipid bases. 3. Isolation and characterization of ketonic intermediates in the synthesis of sphingosine and dihydrosphingosine by cell-free extracts of Hansenula ciferri". J. Biol. Chem. 244 (2): 491–496. doi: 10.1016/S0021-9258(18)94455-8 . PMID   4388074.
  2. Stoffel, W.; Le Kim, D.; Sticht, G. (1968). "Biosynthesis of dihydrosphingosine in vitro". Hoppe-Seyler's Z. Physiol. Chem. 349 (5): 664–670. doi:10.1515/bchm2.1968.349.1.664. PMID   4386961.
  3. 1 2 Voet, Donald; Voet, Judith G.; Pratt, Charlotte W. (2016-02-29). Fundamentals of Biochemistry: Life at the Molecular Level. John Wiley & Sons. ISBN   978-1-118-91840-1.
  4. Bar–Tana, J.; Rose, G.; Brandes, R.; Shapiro, B. (1973-02-01). "Palmitoyl-coenzyme A synthetase. Mechanism of reaction". Biochemical Journal. 131 (2): 199–209. doi:10.1042/bj1310199. ISSN   0264-6021. PMC   1177459 . PMID   4722436.
  5. Sharma, R. (2013), "Biochemical Mechanisms of Fatty Liver and Bioactive Foods", Bioactive Food as Dietary Interventions for Liver and Gastrointestinal Disease, Elsevier, pp. 709–741, doi:10.1016/b978-0-12-397154-8.00041-5, ISBN   978-0-12-397154-8
  6. Kamel, Kamel S.; Halperin, Mitchell L. (2017), "Ketoacidosis", Fluid, Electrolyte and Acid-Base Physiology, Elsevier, pp. 99–139, doi:10.1016/b978-0-323-35515-5.00005-1, ISBN   978-0-323-35515-5
  7. Michel, Christoph; van Echten-Deckert, Gerhild (1997-10-20). "Conversion of dihydroceramide to ceramide occurs at the cytosolic face of the endoplasmic reticulum". FEBS Letters. 416 (2): 153–155. Bibcode:1997FEBSL.416..153M. doi:10.1016/s0014-5793(97)01187-3. ISSN   0014-5793. PMID   9369202. S2CID   467943.