GABRA2

Last updated
GABRA2
Identifiers
Aliases GABRA2 , gamma-aminobutyric acid type A receptor alpha2 subunit
External IDs OMIM: 137140 MGI: 95614 HomoloGene: 20217 GeneCards: GABRA2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000807
NM_001114175
NM_001286827
NM_001330690

NM_008066

RefSeq (protein)

NP_032092

Location (UCSC) Chr 4: 46.25 – 46.48 Mb n/a
PubMed search [2] [3]
Wikidata
View/Edit Human View/Edit Mouse
GABA receptor types and their clinical functions. Notice that a2 receptor type refers to the GABRA2, an anxiolyte. Recepteurs BZD sous-types.jpg
GABA receptor types and their clinical functions. Notice that α2 receptor type refers to the GABRA2, an anxiolyte.
GABAA receptor animation demonstrates the various subunit types that make up the GABA receptor. All the variants of GABA (A) receptors have different functions within the mammalian brain. GABAAreceptor.jpg
GABAA receptor animation demonstrates the various subunit types that make up the GABA receptor. All the variants of GABA (A) receptors have different functions within the mammalian brain.

Gamma-aminobutyric acid receptor subunit alpha-2 is a protein in humans that is encoded by the GABRA2 gene. [4]

GABRA2 is an alpha subunit that is part of GABA-A receptors, which are ligand-gated chloride channels and are activated by the major inhibitory neurotransmitter in the mammalian brain, GABA. Chloride conductance of these channels can be modulated by agents, such as benzodiazepines (psychoactive drugs) that bind to the GABA-A receptor.

GABA-A receptors are composed of two alpha, two beta, and one gamma subunits. They have at least 16 distinct subunits identified, including GABRA2. [5] This receptor is found mainly in specific regions of the brain, such as the hippocampus. [6]

Subunit isoforms are seen around in various locations in the brain throughout growth. The combination of subunits has a large effect on the pharmacological and biophysical characteristics. [7] GABRA2 has been found to mediate anxiolytic activity, which plays a key role in emotional and behavioral control. Most of GABRA2 modifications have been found to be linked to alcoholism and adolescent behavior.

Structure

Shows the five subunits that comprise the GABA-A receptor. GABRA2 is only one alpha subunit in the structure demonstrated with the color red. Ethanol and GABA Receptor.png
Shows the five subunits that comprise the GABA-A receptor. GABRA2 is only one alpha subunit in the structure demonstrated with the color red.

GABRA2 is one of the 16 distinct alpha subunits found for the GABA receptor. GABA-A has a pentametric form, with two alpha, two beta, and one gamma subunit. [6] The various subunit isoforms seen in the GABA-A receptor structure has an effect on its function. GABRA2 is most often seen as part of the most common expression α2β3γ2, which is seen in 13% of all GABA-A receptors. [7] The subunit, GABRA2, is found primarily in hippocampus and/or the forebrain. It is more confined to areas of the brain in comparison to other alpha subunits seen in GABA-A receptors. It is present in 35% of all GABA-A receptors being the fourth most abundant subunit next to GABRA1 and various beta subunits. Like all subunits, it is made from structurally distinct proteins. The presence of this subunit causes an easier binding of benzodiazepine which is a category of psychoactive drugs. [6]

Function

GABRA2 mediates neural activity necessary for information processing in inter-neurons. [6] GABRA2 participates in transporting Cl ions into the membrane, since it forms part of the GABA-A receptor. The influx of Cl causes the hyper-polarization of the membrane, leading to inhibitory actions.

GABRA2 increases the risk of anxiety making it a target for treating behavioral disorders. [8] Some examples of behavioral disorders include anxiety, alcohol dependence, and drug use. GABRA2 is a binding site for benzodiazepines. Benzodiazepines are psychoactive drugs known to reduce anxiety. Benzodiazepines bind to GABRA2 causing chloride channels to open, leading to the hyper-polarization of the membrane. [9] Other anxiolytic drugs like Diazepam target this alpha subunit in GABA-A to induce inhibitory effects. [6]

GABRA2 is associated with reward behavior when it activates the insula. [8] The insula is part of the cerebral cortex responsible for emotions. GABRA2 role in reward behavior explains the higher risk of alcohol dependence and drug use behavior.

Clinical significance

Since GABRA 2 mediates anxiolytic activity, it is a key receptor for emotional control. Several developmental stages of GABRA2 have shown effects on behavior such as adult alcohol dependence and adolescent behavior.

Alcoholism

This is a representation of alcohol's effects on GABA receptors and glutamate receptors. Alcohol effects on GABRA2.jpg
This is a representation of alcohol's effects on GABA receptors and glutamate receptors.

Since GABRA 2 subunit mediates anxiolytic activity, long term use or withdrawal of ethanol can cause dependence alterations in the GABA-A receptor. [6]

When alcohol is present in the brain, it affects two types of receptors: GABA-A, inhibitory receptors, and Glutamate, excitatory receptors. In GABA receptors, alcohol substrates binds allosterically, which allows the GABA receptors to increase their inhibitory activity. Besides giving GABA receptors an extra inhibitory punch, alcohol substrates bind to glutamate receptors, which blocks its excitatory activity. Alcohol effects on both of these metabolic pathways obstructs the brain from making memories, making well thought out decisions, and controlling impulses after a long term use. [10]

Collaborative Study on Genetics of Alcoholism (COGA) identified alcohol dependence on chromosome 4p, where SNP genotyping, measurement of genetic variation, found GABRA2's association with alcoholism within European and African ancestries. Most of these findings were strongly associated with early alcohol use and along with drug dependence. Besides these findings, COGA investigators identified GABRA2 associated with impulsiveness and found other phenotypes affected by alcohol such as EEG-β. [11]

Adolescent behavior

The International Behavioural and Neural Genetics Society reviewed studies that found linkage between β1-subunits in GABA-A receptors and excitability in the reward sensitivity behavior brain region. Linkage between these two suggest that inadequate GABRA2 variants can cause the development of mental disorders, such as addiction. The addictive behaviors can be seen as aggressive and defiant, but most of these behaviors can be caused by both genetic and environmental factors. [12]

GABRA2 genes have been linked to various behavioral traits, such as an absence of impulse control. At least 11 single nucleotide polymorphisms, or SNPs, within the GARBRA2 gene have been correlated to impulsivity and four of which were also found in alcoholism. There was an elevated neuronal activation in the insula and the Nucleus accumbens. [12] In animals, such as rats, a relationship was found between elevated alcohol consumption and increased impulsivity to those exposed to stress at an early stage in life. This impulsivity can be reversed with pharmacological handling of GABA-A receptors containing GABRA2 in certain neurological areas. [12]

See also

Related Research Articles

An anxiolytic is a medication or other intervention that reduces anxiety. This effect is in contrast to anxiogenic agents which increase anxiety. Anxiolytic medications are used for the treatment of anxiety disorders and their related psychological and physical symptoms.

Colloquially known as "downers", depressants or central depressants are drugs that lower neurotransmission levels, or depress or reduce arousal or stimulation in various areas of the brain. Depressants do not change the mood or mental state of others. Stimulants, or "uppers", increase mental or physical function, hence the opposite drug class from depressants are stimulants, not antidepressants.

<span class="mw-page-title-main">GABA receptor</span> Receptors that respond to gamma-aminobutyric acid

The GABA receptors are a class of receptors that respond to the neurotransmitter gamma-aminobutyric acid (GABA), the chief inhibitory compound in the mature vertebrate central nervous system. There are two classes of GABA receptors: GABAA and GABAB. GABAA receptors are ligand-gated ion channels ; whereas GABAB receptors are G protein-coupled receptors, also called metabotropic receptors.

GABA<sub>A</sub> receptor Ionotropic receptor and ligand-gated ion channel

The GABAA receptor (GABAAR) is an ionotropic receptor and ligand-gated ion channel. Its endogenous ligand is γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system. Accurate regulation of GABAergic transmission through appropriate developmental processes, specificity to neural cell types, and responsiveness to activity is crucial for the proper functioning of nearly all aspects of the central nervous system (CNS). Upon opening, the GABAA receptor on the postsynaptic cell is selectively permeable to chloride ions (Cl) and, to a lesser extent, bicarbonate ions (HCO3).

<span class="mw-page-title-main">Acamprosate</span> Medication

Acamprosate, sold under the brand name Campral, is a medication which reduces alcoholism withdrawal symptoms. It is thought to stabilize chemical signaling in the brain that would otherwise be disrupted by alcohol withdrawal. When used alone, acamprosate is not an effective therapy for alcohol use disorder in most individuals, as it only addresses withdrawal symptoms and not psychological dependence. It facilitates a reduction in alcohol consumption as well as full abstinence when used in combination with psychosocial support or other drugs that address the addictive behavior.

<span class="mw-page-title-main">Bretazenil</span> Chemical compound

Bretazenil (Ro16-6028) is an imidazopyrrolobenzodiazepine anxiolytic drug which is derived from the benzodiazepine family, and was invented in 1988. It is most closely related in structure to the GABA antagonist flumazenil, although its effects are somewhat different. It is classified as a high-potency benzodiazepine due to its high affinity binding to benzodiazepine binding sites where it acts as a partial agonist. Its profile as a partial agonist and preclinical trial data suggests that it may have a reduced adverse effect profile. In particular bretazenil has been proposed to cause a less strong development of tolerance and withdrawal syndrome. Bretazenil differs from traditional 1,4-benzodiazepines by being a partial agonist and because it binds to α1, α2, α3, α4, α5 and α6 subunit containing GABAA receptor benzodiazepine receptor complexes. 1,4-benzodiazepines bind only to α1, α2, α3 and α5GABAA benzodiazepine receptor complexes.

GABA gamma-aminobutyric acid (GABA) is a key chemical messenger or a neurotransmitter in the central nervous system, that significantly inhibits neuronal transmission. GABA calms the brain and controls several physiological processes, such as stress, anxiety, and sleep. GABAA receptors are a class of ionotropic receptors that are triggered by GABA. They are made up of five subunits that are assembled in various configurations to create distinct receptor subtypes. The direct influx of chloride ions causes rapid inhibitory responses. GABAB receptors are another type of metabotropic receptor that modifies intracellular signaling pathways to provide slower, sustained inhibitory responses. At synapses, GABAA receptors facilitate rapid inhibitory neurotransmission, whereas GABAB receptor which comprise GABA B1 and GABA B2 subunits—control neurotransmitter release and cellular excitability over a longer period of time. These unique qualities help explain the various ways that GABAergic neurotransmission controls brain communication and neuronal function.

<span class="mw-page-title-main">GABA receptor agonist</span> Category of drug

A GABA receptor agonist is a drug that is an agonist for one or more of the GABA receptors, producing typically sedative effects, and may also cause other effects such as anxiolytic, anticonvulsant, and muscle relaxant effects. There are three receptors of the gamma-aminobutyric acid. The two receptors GABA-α and GABA-ρ are ion channels that are permeable to chloride ions which reduces neuronal excitability. The GABA-β receptor belongs to the class of G-Protein coupled receptors that inhibit adenylyl cyclase, therefore leading to decreased cyclic adenosine monophosphate (cAMP). GABA-α and GABA-ρ receptors produce sedative and hypnotic effects and have anti-convulsion properties. GABA-β receptors also produce sedative effects. Furthermore, they lead to changes in gene transcription.

<span class="mw-page-title-main">Gamma-aminobutyric acid receptor subunit gamma-2</span> Protein-coding gene in the species Homo sapiens

Gamma-aminobutyric acid receptor subunit gamma-2 is a protein that in humans is encoded by the GABRG2 gene.

<span class="mw-page-title-main">Gamma-aminobutyric acid receptor subunit alpha-1</span> Protein-coding gene in humans

Gamma-aminobutyric acid receptor subunit alpha-1 is a protein that in humans is encoded by the GABRA1 gene.

<span class="mw-page-title-main">GABRB3</span> Protein-coding gene in the species Homo sapiens

Gamma-aminobutyric acid receptor subunit beta-3 is a protein that in humans is encoded by the GABRB3 gene. It is located within the 15q12 region in the human genome and spans 250kb. This gene includes 10 exons within its coding region. Due to alternative splicing, the gene codes for many protein isoforms, all being subunits in the GABAA receptor, a ligand-gated ion channel. The beta-3 subunit is expressed at different levels within the cerebral cortex, hippocampus, cerebellum, thalamus, olivary body and piriform cortex of the brain at different points of development and maturity. GABRB3 deficiencies are implicated in many human neurodevelopmental disorders and syndromes such as Angelman syndrome, Prader-Willi syndrome, nonsyndromic orofacial clefts, epilepsy and autism. The effects of methaqualone and etomidate are mediated through GABBR3 positive allosteric modulation.

<span class="mw-page-title-main">SL651498</span> Chemical compound

SL651498 is an anxiolytic and anticonvulsant drug used in scientific research, with a chemical structure most closely related to β-carboline derivatives such as abecarnil and gedocarnil. It has similar effects to benzodiazepine drugs, but is structurally distinct and so is classed as a nonbenzodiazepine anxiolytic.

<span class="mw-page-title-main">GABRB2</span> Protein-coding gene in the species Homo sapiens

The GABAA beta-2 subunit is a protein that in humans is encoded by the GABRB2 gene. It combines with other subunits to form the ionotropic GABAA receptors. GABA system is the major inhibitory system in the brain, and its dominant GABAA receptor subtype is composed of α1, β2, and γ2 subunits with the stoichiometry of 2:2:1, which accounts for 43% of all GABAA receptors. Alternative splicing of the GABRB2 gene leads at least to four isoforms, viz. β2-long (β2L) and β2-short. Alternatively spliced variants displayed similar but non-identical electrophysiological properties. GABRB2 is subjected to positive selection and known to be both an alternative splicing and a recombination hotspot; it is regulated via epigenetic regulation including imprinting and gene and promoter methylation GABRB2 has been associated with a number of neuropsychiatric disorders, and found to display altered expression in cancer.

<span class="mw-page-title-main">GABRA6</span> Protein-coding gene in the species Homo sapiens

Gamma-aminobutyric acid receptor subunit alpha-6 is a protein that in humans is encoded by the GABRA6 gene.

<span class="mw-page-title-main">GABRA3</span> Protein-coding gene in humans

Gamma-aminobutyric acid receptor subunit alpha-3 is a protein that in humans is encoded by the GABRA3 gene.

<span class="mw-page-title-main">GABRA4</span> Protein-coding gene in the species Homo sapiens

Gamma-aminobutyric acid receptor subunit alpha-4 is a protein that in humans is encoded by the GABRA4 gene.

<span class="mw-page-title-main">GABRG3</span> Protein-coding gene in the species Homo sapiens

GABAA receptor-γ3, also known as GABRG3, is a protein which in humans is encoded by the GABRG3 gene.

<span class="mw-page-title-main">GABRD</span> Protein-coding gene in the species Homo sapiens

Gamma-aminobutyric acid receptor subunit delta is a protein that in humans is encoded by the GABRD gene. In the mammalian brain, the delta (δ) subunit forms specific GABAA receptor subtypes by co-assembly leading to δ subunit containing GABAA receptors.

<span class="mw-page-title-main">GABRG1</span> Protein-coding gene in the species Homo sapiens

Gamma-aminobutyric acid receptor subunit gamma-1 is a protein that in humans is encoded by the GABRG1 gene. The protein encoded by this gene is a subunit of the GABAA receptor.

GABA<sub>A</sub> receptor positive allosteric modulator GABAA receptor positive modulators

In pharmacology, GABAA receptor positive allosteric modulators, also known as GABAkines or GABAA receptor potentiators, are positive allosteric modulator (PAM) molecules that increase the activity of the GABAA receptor protein in the vertebrate central nervous system.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000151834 - Ensembl, May 2017
  2. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "GABRA2 gamma-aminobutyric acid type A receptor alpha2 subunit [Homo sapiens (human)]". Gene - NCBI.
  5. "Entrez Gene: GABRA2 gamma-aminobutyric acid (GABA) A receptor, alpha 2".
  6. 1 2 3 4 5 6 Hanns S, Möhler H (2007). The GABA Receptor. New York: Humana Press. pp. 23–31, 69–87, 87–111. ISBN   978-1-59745-465-0.
  7. 1 2 Enoch MA (July 2008). "The role of GABA(A) receptors in the development of alcoholism". Pharmacology Biochemistry and Behavior. New Insights Into the Function of GABAA Receptor Subtypes. 90 (1): 95–104. doi:10.1016/j.pbb.2008.03.007. PMC   2577853 . PMID   18440057.
  8. 1 2 Engin E, Liu J, Rudolph U (November 2012). "α2-containing GABA(A) receptors: a target for the development of novel treatment strategies for CNS disorders". Pharmacology & Therapeutics. 136 (2): 142–152. doi:10.1016/j.pharmthera.2012.08.006. PMC   3478960 . PMID   22921455.
  9. Nuss P (2015-01-17). "Anxiety disorders and GABA neurotransmission: a disturbance of modulation". Neuropsychiatric Disease and Treatment. 11: 165–175. doi: 10.2147/NDT.S58841 . PMC   4303399 . PMID   25653526.
  10. Sullivan EV, Harris RA, Pfefferbaum A (2010). "Alcohol's effects on brain and behavior". Alcohol Research & Health. 33 (1–2): 127–143. PMC   3625995 . PMID   23579943.
  11. Edenberg HJ, Foroud T (August 2013). "Genetics and alcoholism". Nature Reviews. Gastroenterology & Hepatology. 10 (8): 487–494. doi:10.1038/nrgastro.2013.86. PMC   4056340 . PMID   23712313.
  12. 1 2 3 Stephens DN, King SL, Lambert JJ, Belelli D, Duka T (January 2017). "GABAA receptor subtype involvement in addictive behaviour". Genes, Brain and Behavior. 16 (1): 149–184. doi: 10.1111/gbb.12321 . PMID   27539865.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.