TPA-023

Last updated
TPA-023
TPA-023.png
TPA-023 3D ball.png
Clinical data
Other namesMK-0777
Routes of
administration
By mouth
Pharmacokinetic data
Metabolism liver
Elimination half-life 6.7 hours
Identifiers
  • 7-(1,1-Dimethylethyl)-6-(2-ethyl-2H-1,2,4-triazol-3-ylmethoxy)-3-(2-fluorophenyl)-1,2,4-triazolo[4,3-b]pyridazine
CAS Number
PubChem CID
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula C20H22FN7O
Molar mass 395.442 g·mol−1
3D model (JSmol)
  • CC(C)(C)C2=Cc3nnc(-c1ccccc1F)n3N=C2OCc4ncnn4CC
  • InChI=1S/C20H22FN7O/c1-5-27-17(22-12-23-27)11-29-19-14(20(2,3)4)10-16-24-25-18(28(16)26-19)13-8-6-7-9-15(13)21/h6-10,12H,5,11H2,1-4H3
  • Key:QKIWQBLNTSQOLY-UHFFFAOYSA-N
   (verify)

TPA-023 (MK-0777) is an anxiolytic drug with a novel chemical structure, which is used in scientific research. It has similar effects to benzodiazepine drugs, but is structurally distinct and so is classed as a nonbenzodiazepine anxiolytic. It is a mixed, subtype-selective ligand of the benzodiazepine site of α1, α2, α3, and α5-containing GABAA receptors, where it acts as a partial agonist at benzodiazepine sites of the α2 and α3-containing subtypes, but as a silent antagonist at α1 and α5-containing subtypes. [1] It has primarily anxiolytic and anticonvulsant effects in animal tests, but with no sedative effects even at 50 times the effective anxiolytic dose. [2] [3]

In human trials on healthy volunteers, TPA-023 was comparable to lorazepam, but lacked negative effects on cognition, memory, alertness or coordination seen with the latter drug. [4] In Phase II trials, the compound was significantly superior to placebo without inducing sedation. The clinical development was halted due to preclinical toxicity (cataract) in long term dosing studies. [5] [6] TPA-023 is well absorbed following oral administration and extensively metabolised by the liver, with a half-life of 6.7 hours. [7] The main enzyme involved in its metabolism is CYP3A4, with some contribution by CYP3A5. [8]

Related Research Articles

GABA<sub>A</sub> receptor Ionotropic receptor and ligand-gated ion channel

The GABAA receptor (GABAAR) is an ionotropic receptor and ligand-gated ion channel. Its endogenous ligand is γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system. Accurate regulation of GABAergic transmission through appropriate developmental processes, specificity to neural cell types, and responsiveness to activity is crucial for the proper functioning of nearly all aspects of the central nervous system (CNS). Upon opening, the GABAA receptor on the postsynaptic cell is selectively permeable to chloride ions and, to a lesser extent, bicarbonate ions.

<span class="mw-page-title-main">Adinazolam</span> Triazolobenzodiazepine drug

Adinazolam is a tranquilizer of the triazolobenzodiazepine (TBZD) class, which are benzodiazepines (BZDs) fused with a triazole ring. It possesses anxiolytic, anticonvulsant, sedative, and antidepressant properties. Adinazolam was developed by Jackson B. Hester, who was seeking to enhance the antidepressant properties of alprazolam, which he also developed. Adinazolam was never FDA approved and never made available to the public market; however, it has been sold as a designer drug.

<span class="mw-page-title-main">Bretazenil</span> Chemical compound

Bretazenil (Ro16-6028) is an imidazopyrrolobenzodiazepine anxiolytic drug which is derived from the benzodiazepine family, and was invented in 1988. It is most closely related in structure to the GABA antagonist flumazenil, although its effects are somewhat different. It is classified as a high-potency benzodiazepine due to its high affinity binding to benzodiazepine binding sites where it acts as a partial agonist. Its profile as a partial agonist and preclinical trial data suggests that it may have a reduced adverse effect profile. In particular bretazenil has been proposed to cause a less strong development of tolerance and withdrawal syndrome. Bretazenil differs from traditional 1,4-benzodiazepines by being a partial agonist and because it binds to α1, α2, α3, α4, α5 and α6 subunit containing GABAA receptor benzodiazepine receptor complexes. 1,4-benzodiazepines bind only to α1, α2, α3 and α5GABAA benzodiazepine receptor complexes.

<span class="mw-page-title-main">Pagoclone</span> Chemical compound

Pagoclone is an anxiolytic agent from the cyclopyrrolone family, related to better-known drugs such as the sleeping medication zopiclone. It was synthesized by a French team working for Rhone-Poulenc & Rorer S.A. Pagoclone belongs to the class of nonbenzodiazepines, which have similar effects to the older benzodiazepine group, but with quite different chemical structures. It was never commercialised.

<span class="mw-page-title-main">L-838,417</span> Chemical compound

L-838,417 is an anxiolytic drug used in scientific research. It has similar effects to benzodiazepine drugs, but is structurally distinct and so is classed as a nonbenzodiazepine anxiolytic. The compound was developed by Merck, Sharp and Dohme.

<span class="mw-page-title-main">SL651498</span> Chemical compound

SL651498 is an anxiolytic and anticonvulsant drug used in scientific research, with a chemical structure most closely related to β-carboline derivatives such as abecarnil and gedocarnil. It has similar effects to benzodiazepine drugs, but is structurally distinct and so is classed as a nonbenzodiazepine anxiolytic.

<span class="mw-page-title-main">CL-218,872</span> Chemical compound

CL-218,872 is a sedative and hypnotic drug used in scientific research. It has similar effects to sedative-hypnotic benzodiazepine drugs such as triazolam, but is structurally distinct and so is classed as a nonbenzodiazepine hypnotic.

<span class="mw-page-title-main">GABRA3</span> Protein-coding gene in humans

Gamma-aminobutyric acid receptor subunit alpha-3 is a protein that in humans is encoded by the GABRA3 gene.

<span class="mw-page-title-main">Adipiplon</span> Chemical compound

Adipiplon is an anxiolytic drug developed by Neurogen Corporation. It has similar effects to benzodiazepine drugs, but is structurally distinct and classed as a nonbenzodiazepine anxiolytic.

<span class="mw-page-title-main">SB-205384</span> Chemical compound

SB-205384 is an anxiolytic drug. It has similar effects to benzodiazepine drugs, but is structurally distinct and so is classed as a nonbenzodiazepine anxiolytic.

<span class="mw-page-title-main">ELB-139</span> Chemical compound

ELB-139 (LS-191,811) is an anxiolytic drug with a novel chemical structure, which is used in scientific research. It has similar effects to benzodiazepine drugs, but is structurally distinct and so is classed as a nonbenzodiazepine anxiolytic.

<span class="mw-page-title-main">NS-2664</span> Chemical compound

NS-2664 (LS-193,048) is an anxiolytic drug with a novel chemical structure, developed by the small pharmaceutical company NeuroSearch. It has similar effects to benzodiazepine drugs, but is structurally distinct and so is classed as a nonbenzodiazepine anxiolytic. NS-2664 is a potent but non-selective partial agonist at GABAA receptors, although with little efficacy at the α1 subtype and more at α2 and α3. It has potent anticonvulsant effects in animal studies, but a relatively short duration of action, and produces little sedative effects or physical dependence.

<span class="mw-page-title-main">NS-2710</span> Chemical compound

NS-2710 (LS-193,970) is an anxiolytic drug with a novel chemical structure, developed by the small pharmaceutical company NeuroSearch. It has similar effects to benzodiazepine drugs, but is structurally distinct and so is classed as a nonbenzodiazepine anxiolytic. NS-2710 is a potent but non-selective partial agonist at GABAA receptors, although with little efficacy at the α1 subtype and more at α2 and α3. It has anxiolytic effects comparable to chlordiazepoxide, and while it is a less potent anticonvulsant than the related drug NS-2664, it has a much longer duration of action, and similarly to other α2/α3-preferring partial agonists produces little sedative effects or physical dependence.

<span class="mw-page-title-main">TP-13</span> Chemical compound

TP-13 is an anxiolytic drug with a novel chemical structure, which is used in scientific research. It has similar effects to benzodiazepine drugs, but is structurally distinct and so is classed as a nonbenzodiazepine anxiolytic. It is a subtype-selective partial agonist at GABAA receptors, binding selectively to GABAA receptor complexes bearing α2 and α3 subunits. It has modest anticonvulsant activity although less than that of diazepam, and its main effect is likely to be selective anxiolytic action, as seen with other related α2/3-preferring agonists such as L-838,417.

α5IA Chemical compound

α5IA (LS-193,268) is a nootropic drug invented in 2004 by a team working for Merck, Sharp and Dohme, which acts as a subtype-selective inverse agonist at the benzodiazepine binding site on the GABAA receptor. It binds to α1, α2, α3 and α5 -containing subtypes, with functional selectivity for α5-containing subtypes.

<span class="mw-page-title-main">L-655,708</span> Chemical compound

L-655,708 (FG-8094) is a nootropic drug invented in 1996 by a team working for Merck, Sharp and Dohme, that was the first compound developed which acts as a subtype-selective inverse agonist at the α5 subtype of the benzodiazepine binding site on the GABAA receptor. It acts as an inverse agonist at the α1, α2, α3 and α5 subtypes, but with much higher affinity for α5, and unlike newer α5 inverse agonists such as α5IA, L-655,708 exerts its subtype selectivity purely via higher binding affinity for this receptor subtype, with its efficacy as an inverse agonist being around the same at all the subtypes it binds to.

GABA<sub>A</sub> receptor positive allosteric modulator GABAA receptor positive modulators

In pharmacology, GABAA receptor positive allosteric modulators, also known as GABAkines or GABAA receptor potentiators, are positive allosteric modulator (PAM) molecules that increase the activity of the GABAA receptor protein in the vertebrate central nervous system.

<span class="mw-page-title-main">Desmethylzopiclone</span> Major metabolite of the hypnotic medication zopiclone

Desmethylzopiclone, also known as SEP-174559, is an active metabolite of the sedative-hypnotic drug zopiclone.

<span class="mw-page-title-main">MRK-409</span> Abandoned drug

MRK-409, also known as MK-0343, is a GABAA receptor partial agonist.

α3IA Chemical compound, anxiogenic

α3IA, also known as GTPL4094, is an inverse agonist of the GABAA receptor. It is more selective for the α3 subunit, hence its name.

References

  1. Kohut SJ, Ator NA (July 2008). "Novel discriminative stimulus effects of TPA023B, subtype-selective gamma-aminobutyric-acid(A)/benzodiazepine modulator: comparisons with zolpidem, lorazepam, and TPA023". Pharmacology, Biochemistry, and Behavior. 90 (1): 65–73. doi:10.1016/j.pbb.2008.02.019. PMC   3010402 . PMID   18395780.
  2. Carling RW, Madin A, Guiblin A, Russell MG, Moore KW, Mitchinson A, et al. (November 2005). "7-(1,1-Dimethylethyl)-6-(2-ethyl-2H-1,2,4-triazol-3-ylmethoxy)-3-(2-fluorophenyl)-1,2,4-triazolo[4,3-b]pyridazine: a functionally selective gamma-aminobutyric acid(A) (GABA(A)) alpha2/alpha3-subtype selective agonist that exhibits potent anxiolytic activity but is not sedating in animal models". Journal of Medicinal Chemistry. 48 (23): 7089–92. doi:10.1021/jm058034a. PMID   16279764.
  3. Atack JR, Wafford KA, Tye SJ, Cook SM, Sohal B, Pike A, et al. (January 2006). "TPA023 [7-(1,1-dimethylethyl)-6-(2-ethyl-2H-1,2,4-triazol-3-ylmethoxy)-3-(2-fluorophenyl)-1,2,4-triazolo[4,3-b]pyridazine], an agonist selective for alpha2- and alpha3-containing GABAA receptors, is a nonsedating anxiolytic in rodents and primates". The Journal of Pharmacology and Experimental Therapeutics. 316 (1): 410–22. doi:10.1124/jpet.105.089920. PMID   16183706. S2CID   23047072.
  4. de Haas SL, de Visser SJ, van der Post JP, de Smet M, Schoemaker RC, Rijnbeek B, et al. (June 2007). "Pharmacodynamic and pharmacokinetic effects of TPA023, a GABA(A) alpha(2,3) subtype-selective agonist, compared to lorazepam and placebo in healthy volunteers". Journal of Psychopharmacology. 21 (4): 374–83. doi:10.1177/0269881106072343. PMID   17092968. S2CID   22626040.
  5. Möhler H (June 2011). "The rise of a new GABA pharmacology". Neuropharmacology. 60 (7–8): 1042–9. doi:10.1016/j.neuropharm.2010.10.020. PMID   21035473. S2CID   46645932.
  6. Atack JR (2008). "GABA(A) receptor subtype-selective efficacy: TPA023, an alpha2/alpha3 selective non-sedating anxiolytic and alpha5IA, an alpha5 selective cognition enhancer". CNS Neuroscience & Therapeutics. 14 (1): 25–35. doi:10.1111/j.1527-3458.2007.00034.x. PMC   6494020 . PMID   18482097.
  7. Polsky-Fisher SL, Vickers S, Cui D, Subramanian R, Arison BH, Agrawal NG, et al. (June 2006). "Metabolism and disposition of a potent and selective GABA-Aalpha2/3 receptor agonist in healthy male volunteers". Drug Metabolism and Disposition. 34 (6): 1004–11. doi:10.1124/dmd.105.008193. PMID   16510541. S2CID   17373.
  8. Ma B, Polsky-Fisher SL, Vickers S, Cui D, Rodrigues AD (August 2007). "Cytochrome P450 3A-dependent metabolism of a potent and selective gamma-aminobutyric acid Aalpha2/3 receptor agonist in vitro: involvement of cytochrome P450 3A5 displaying biphasic kinetics". Drug Metabolism and Disposition. 35 (8): 1301–7. doi:10.1124/dmd.107.014753. PMID   17460031. S2CID   86847445.