Panadiplon

Last updated
Panadiplon
Panadiplon.svg
Clinical data
ATC code
  • none
Legal status
Legal status
Identifiers
  • 3-(5-cyclopropyl-1,2,4-oxadiazol-3-yl)-5 -propan-2-ylimidazo[5,1-c]quinoxalin-4-one
CAS Number
PubChem CID
ChemSpider
UNII
KEGG
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
Formula C18H17N5O2
Molar mass 335.367 g·mol−1
3D model (JSmol)
  • O=C4N(c5ccccc5n3cnc(c1nc(on1)C2CC2)c34)C(C)C
  • InChI=1S/C18H17N5O2/c1-10(2)23-13-6-4-3-5-12(13)22-9-19-14(15(22)18(23)24)16-20-17(25-21-16)11-7-8-11/h3-6,9-11H,7-8H2,1-2H3 Yes check.svgY
  • Key:ZGEGOFCLSWVVKG-UHFFFAOYSA-N Yes check.svgY
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Panadiplon (U-78875) is an anxiolytic drug with a novel chemical structure that is not closely related to other drugs of this type. It has a similar pharmacological profile to the benzodiazepine family of drugs, but with mainly anxiolytic properties and relatively little sedative or amnestic effect, and so is classified as a nonbenzodiazepine anxiolytic. [1]

Panadiplon acts as a high-affinity GABAA receptor partial agonist, [2] [3] but despite showing a useful effects profile of a potent anxiolytic with little sedative effects, panadiplon was discontinued from clinical development for use in humans after showing evidence of liver damage in both animals and human trials. [4] [5] Panadiplon however continues to be used in animal research, mainly as a subtype-selective reference drug to compare other GABAA agonists against. [6] [7]

Related Research Articles

<span class="mw-page-title-main">Imidazopyridine</span> Class of compounds

An imidazopyridine is a nitrogen containing heterocycle that is also a class of drugs that contain this same chemical substructure. In general, they are GABAA receptor agonists, however recently proton pump inhibitors, aromatase inhibitors, NSAIDs and other classes of drugs in this class have been developed as well. Despite usually being similar to them in effect, they are not chemically related to benzodiazepines. As such, GABAA-agonizing imidazopyridines, pyrazolopyrimidines, and cyclopyrrones are sometimes grouped together and referred to as "nonbenzodiazepines." Imidazopyridines include:

<span class="mw-page-title-main">Alpidem</span> Anxiolytic medication

Alpidem, sold under the brand name Ananxyl, is a nonbenzodiazepine anxiolytic medication which was briefly used to treat anxiety disorders but is no longer marketed. It was previously marketed in France, but was discontinued due to liver toxicity. Alpidem is taken by mouth.

<span class="mw-page-title-main">Bretazenil</span> Chemical compound

Bretazenil (Ro16-6028) is an imidazopyrrolobenzodiazepine anxiolytic drug which is derived from the benzodiazepine family, and was invented in 1988. It is most closely related in structure to the GABA antagonist flumazenil, although its effects are somewhat different. It is classified as a high-potency benzodiazepine due to its high affinity binding to benzodiazepine binding sites where it acts as a partial agonist. Its profile as a partial agonist and preclinical trial data suggests that it may have a reduced adverse effect profile. In particular bretazenil has been proposed to cause a less strong development of tolerance and withdrawal syndrome. Bretazenil differs from traditional 1,4-benzodiazepines by being a partial agonist and because it binds to α1, α2, α3, α4, α5 and α6 subunit containing GABAA receptor benzodiazepine receptor complexes. 1,4-benzodiazepines bind only to α1, α2, α3 and α5GABAA benzodiazepine receptor complexes.

<span class="mw-page-title-main">Saripidem</span> Chemical compound

Saripidem is a sedative and anxiolytic drug in the imidazopyridine family, which is related to the better known drugs zolpidem and alpidem.

<span class="mw-page-title-main">Imidazenil</span> Benzodiazepine drug

Imidazenil is an experimental anxiolytic drug which is derived from the benzodiazepine family, and is most closely related to other imidazobenzodiazepines such as midazolam, flumazenil, and bretazenil.

<span class="mw-page-title-main">QH-II-66</span> Benzodiazepine sedative drug

QH-II-66 (QH-ii-066) is a sedative drug which is a benzodiazepine derivative. It produces some of the same effects as other benzodiazepines, but is much more selective than most other drugs of this class and so produces somewhat less sedation and ataxia than other related drugs such as diazepam and triazolam, although it still retains anticonvulsant effects.

<span class="mw-page-title-main">Abecarnil</span> Chemical compound

Abecarnil (ZK-112,119) is an anxiolytic drug from the β-Carboline family. It is one of a relatively recently developed class of medicines known as the nonbenzodiazepines, which have similar effects to the older benzodiazepine group, but with quite different chemical structures. It is a partial agonist acting selectively at the benzodiazepine site of the GABAA receptor.

<span class="mw-page-title-main">L-838,417</span> Chemical compound

L-838,417 is an anxiolytic drug used in scientific research. It has similar effects to benzodiazepine drugs, but is structurally distinct and so is classed as a nonbenzodiazepine anxiolytic. The compound was developed by Merck, Sharp and Dohme.

<span class="mw-page-title-main">SL651498</span> Chemical compound

SL651498 is an anxiolytic and anticonvulsant drug used in scientific research, with a chemical structure most closely related to β-carboline derivatives such as abecarnil and gedocarnil. It has similar effects to benzodiazepine drugs, but is structurally distinct and so is classed as a nonbenzodiazepine anxiolytic.

<span class="mw-page-title-main">RWJ-51204</span> Chemical compound

RWJ-51204 is an anxiolytic drug used in scientific research. It has similar effects to benzodiazepine drugs, but is structurally distinct and so is classed as a nonbenzodiazepine anxiolytic.

<span class="mw-page-title-main">CL-218,872</span> Chemical compound

CL-218,872 is a sedative and hypnotic drug used in scientific research. It has similar effects to sedative-hypnotic benzodiazepine drugs such as triazolam, but is structurally distinct and so is classed as a nonbenzodiazepine hypnotic.

<span class="mw-page-title-main">Y-23684</span> Chemical compound

Y-23684 is an anxiolytic drug with a novel chemical structure, which is used in scientific research. It has similar effects to benzodiazepine drugs, but is structurally distinct and so is classed as a nonbenzodiazepine anxiolytic.

<span class="mw-page-title-main">U-90042</span> Chemical compound

U-90042 is a sedative and hypnotic drug used in scientific research. It has similar effects to sedative-hypnotic benzodiazepine drugs, but is structurally distinct and so is classed as a nonbenzodiazepine hypnotic.

<span class="mw-page-title-main">Tracazolate</span> Chemical compound

Tracazolate (ICI-136,753) is an anxiolytic drug which is used in scientific research. It is a pyrazolopyridine derivative, most closely related to pyrazolopyrimidine drugs such as zaleplon, and is one of a structurally diverse group of drugs known as the nonbenzodiazepines which act at the same receptor targets as benzodiazepines but have distinct chemical structures.

<span class="mw-page-title-main">SB-205384</span> Chemical compound

SB-205384 is an anxiolytic drug. It has similar effects to benzodiazepine drugs, but is structurally distinct and so is classed as a nonbenzodiazepine anxiolytic.

<span class="mw-page-title-main">ELB-139</span> Chemical compound

ELB-139 (LS-191,811) is an anxiolytic drug with a novel chemical structure, which is used in scientific research. It has similar effects to benzodiazepine drugs, but is structurally distinct and so is classed as a nonbenzodiazepine anxiolytic.

<span class="mw-page-title-main">NS-2664</span> Chemical compound

NS-2664 (LS-193,048) is an anxiolytic drug with a novel chemical structure, developed by the small pharmaceutical company NeuroSearch. It has similar effects to benzodiazepine drugs, but is structurally distinct and so is classed as a nonbenzodiazepine anxiolytic. NS-2664 is a potent but non-selective partial agonist at GABAA receptors, although with little efficacy at the α1 subtype and more at α2 and α3. It has potent anticonvulsant effects in animal studies, but a relatively short duration of action, and produces little sedative effects or physical dependence.

<span class="mw-page-title-main">NS-2710</span> Chemical compound

NS-2710 (LS-193,970) is an anxiolytic drug with a novel chemical structure, developed by the small pharmaceutical company NeuroSearch. It has similar effects to benzodiazepine drugs, but is structurally distinct and so is classed as a nonbenzodiazepine anxiolytic. NS-2710 is a potent but non-selective partial agonist at GABAA receptors, although with little efficacy at the α1 subtype and more at α2 and α3. It has anxiolytic effects comparable to chlordiazepoxide, and while it is a less potent anticonvulsant than the related drug NS-2664, it has a much longer duration of action, and similarly to other α2/α3-preferring partial agonists produces little sedative effects or physical dependence.

<span class="mw-page-title-main">TPA-023</span> Chemical compound

TPA-023 (MK-0777) is an anxiolytic drug with a novel chemical structure, which is used in scientific research. It has similar effects to benzodiazepine drugs, but is structurally distinct and so is classed as a nonbenzodiazepine anxiolytic. It is a mixed, subtype-selective ligand of the benzodiazepine site of α1, α2, α3, and α5-containing GABAA receptors, where it acts as a partial agonist at benzodiazepine sites of the α2 and α3-containing subtypes, but as a silent antagonist at α1 and α5-containing subtypes. It has primarily anxiolytic and anticonvulsant effects in animal tests, but with no sedative effects even at 50 times the effective anxiolytic dose.

<span class="mw-page-title-main">Desmethylzopiclone</span> Major metabolite of the hypnotic medication zopiclone

Desmethylzopiclone, also known as SEP-174559, is an active metabolite of the sedative-hypnotic drug zopiclone.

References

  1. Tang AH, Franklin SR, Himes CS, Ho PM (October 1991). "Behavioral effects of U-78875, a quinoxalinone anxiolytic with potent benzodiazepine antagonist activity". The Journal of Pharmacology and Experimental Therapeutics. 259 (1): 248–54. PMID   1681085.
  2. Ator NA, Griffiths RR (June 1999). "Drug discrimination analysis of partial agonists at the benzodiazepine site. I. Differential effects of U-78875 across training conditions in baboons and rats". The Journal of Pharmacology and Experimental Therapeutics. 289 (3): 1434–46. PMID   10336537.
  3. Rowlett JK, Woolverton WL (February 2001). "Discriminative stimulus effects of panadiplon (U-78875), a partial agonist at the benzodiazepine site, in pentobarbital-trained rhesus monkeys". Drug and Alcohol Dependence. 61 (3): 229–36. doi:10.1016/s0376-8716(00)00142-3. PMID   11164687.
  4. Ulrich RG, Bacon JA, Branstetter DG, Cramer CT, Funk GM, Hunt CE, Petrella DK, Sun EL (April 1995). "Induction of a hepatic toxic syndrome in the Dutch-belted rabbit by a quinoxalinone anxiolytic". Toxicology. 98 (1–3): 187–98. doi:10.1016/0300-483x(94)02951-p. PMID   7740546.
  5. Ulrich RG, Bacon JA, Brass EP, Cramer CT, Petrella DK, Sun EL (May 2001). "Metabolic, idiosyncratic toxicity of drugs: overview of the hepatic toxicity induced by the anxiolytic, panadiplon". Chemico-Biological Interactions. 134 (3): 251–70. doi:10.1016/s0009-2797(01)00161-2. PMID   11336974.
  6. Platt DM, Duggan A, Spealman RD, Cook JM, Li X, Yin W, Rowlett JK (May 2005). "Contribution of alpha 1GABAA and alpha 5GABAA receptor subtypes to the discriminative stimulus effects of ethanol in squirrel monkeys". The Journal of Pharmacology and Experimental Therapeutics. 313 (2): 658–67. doi:10.1124/jpet.104.080275. PMID   15650112. S2CID   97681615.
  7. Dubinsky B, Vaidya AH, Rosenthal DI, Hochman C, Crooke JJ, DeLuca S, DeVine A, Cheo-Isaacs CT, Carter AR, Jordan AD, Reitz AB, Shank RP (November 2002). "5-ethoxymethyl-7-fluoro-3-oxo-1,2,3,5-tetrahydrobenzo[4,5]imidazo[1,2a]pyridine-4-N-(2-fluorophenyl)carboxamide (RWJ-51204), a new nonbenzodiazepine anxiolytic". The Journal of Pharmacology and Experimental Therapeutics. 303 (2): 777–90. doi:10.1124/jpet.102.036954. PMID   12388665. S2CID   23880756.