Thiobutabarbital

Last updated
Thiobutabarbital
(RS)-Thiobutabarbital Structural Formula V1.svg
Clinical data
Other namesThiobutabarbital, Inactin, Brevinarcon, 5-sec-Butyl-5-ethyl-2-thiobarbituric acid
ATC code
  • none
Identifiers
  • 5-sec-butyl-5-ethyl-2-thioxodihydropyrimidine-4,6(1H,5H)-dione
CAS Number
PubChem CID
ChemSpider
UNII
ECHA InfoCard 100.016.600 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C10H16N2O2S
Molar mass 228.31 g·mol−1
3D model (JSmol)
  • O=C1NC(=S)NC(=O)C1(C(C)CC)CC
  • InChI=1S/C10H16N2O2S/c1-4-6(3)10(5-2)7(13)11-9(15)12-8(10)14/h6H,4-5H2,1-3H3,(H2,11,12,13,14,15) Yes check.svgY
  • Key:IDELNEDBPWKHGK-UHFFFAOYSA-N Yes check.svgY
 X mark.svgNYes check.svgY  (what is this?)    (verify)

Thiobutabarbital (Inactin, Brevinarcon) is a short-acting barbiturate derivative invented in the 1950s. It has sedative, anticonvulsant and hypnotic effects, and is still used in veterinary medicine for induction in surgical anaesthesia. [1]

Stereochemistry

Thiobutabarbital contains a stereocenter and consists of two enantiomers. This is a racemate, i.e. a 1: 1 mixture of ( R ) - and the ( S ) - form: [2]

Enantiomers of Thiobutabarbital
(R)-Thiobutabarbital Structural Formula V1.svg
(R)-Form
(S)-Thiobutabarbital Structural Formula V1.svg
(S)-Form

Related Research Articles

<span class="mw-page-title-main">Complex number</span> Number with a real and an imaginary part

In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted i, called the imaginary unit and satisfying the equation ; every complex number can be expressed in the form , where a and b are real numbers. Because no real number satisfies the above equation, i was called an imaginary number by René Descartes. For the complex number , a is called the real part, and b is called the imaginary part. The set of complex numbers is denoted by either of the symbols or C. Despite the historical nomenclature "imaginary", complex numbers are regarded in the mathematical sciences as just as "real" as the real numbers and are fundamental in many aspects of the scientific description of the natural world.

In mathematics, the derivative quantifies the sensitivity of change of a function's output with respect to its input. Derivatives are a fundamental tool of calculus. For example, the derivative of the position of a moving object with respect to time is the object's velocity: this measures how quickly the position of the object changes when time advances.

Density is a substance's mass per unit of volume. The symbol most often used for density is ρ, although the Latin letter D can also be used. Mathematically, density is defined as mass divided by volume:

<span class="mw-page-title-main">Kinetic energy</span> Energy of a moving physical body

In physics, the kinetic energy of an object is the form of energy that it possesses due to its motion.

<span class="mw-page-title-main">Momentum</span> Property of a mass in motion

In Newtonian mechanics, momentum is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If m is an object's mass and v is its velocity, then the object's momentum p is:

<span class="mw-page-title-main">Special relativity</span> Theory of interwoven space and time by Albert Einstein

In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein's 1905 treatment, the theory is presented as being based on just two postulates:

  1. The laws of physics are invariant (identical) in all inertial frames of reference.
  2. The speed of light in vacuum is the same for all observers, regardless of the motion of light source or observer.
<span class="mw-page-title-main">Spacetime</span> Mathematical model combining space and time

In physics, spacetime is any mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualizing and understanding relativistic effects such as how different observers perceive where and when events occur.

<span class="mw-page-title-main">Tensor</span> Algebraic object with geometric applications

In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tensors. There are many types of tensors, including scalars and vectors, dual vectors, multilinear maps between vector spaces, and even some operations such as the dot product. Tensors are defined independent of any basis, although they are often referred to by their components in a basis related to a particular coordinate system; those components form an array, which can be thought of as a high-dimensional matrix.

<span class="mw-page-title-main">Torque</span> Turning force around an axis

In physics and mechanics, torque is the rotational analogue of linear force. It is also referred to as the moment of force. It describes the rate of change of angular momentum that would be imparted to an isolated body.

<span class="mw-page-title-main">Alternating current</span> Electric current that periodically reverses direction

Alternating current (AC) is an electric current which periodically reverses direction and changes its magnitude continuously with time, in contrast to direct current (DC), which flows only in one direction. Alternating current is the form in which electric power is delivered to businesses and residences, and it is the form of electrical energy that consumers typically use when they plug kitchen appliances, televisions, fans and electric lamps into a wall socket. The abbreviations AC and DC are often used to mean simply alternating and direct, respectively, as when they modify current or voltage.

Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows:

  1. A body remains at rest, or in motion at a constant speed in a straight line, unless acted upon by a force.
  2. The net force on a body is equal to the body's acceleration multiplied by its mass or, equivalently, the rate at which the body's momentum changes with time.
  3. If two bodies exert forces on each other, these forces have the same magnitude but opposite directions.
<span class="mw-page-title-main">Schrödinger equation</span> Description of a quantum-mechanical system

The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. It is named after Erwin Schrödinger, who postulated the equation in 1925 and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933.

<span class="mw-page-title-main">Ideal gas law</span> Equation of the state of a hypothetical ideal gas

The ideal gas law, also called the general gas equation, is the equation of state of a hypothetical ideal gas. It is a good approximation of the behavior of many gases under many conditions, although it has several limitations. It was first stated by Benoît Paul Émile Clapeyron in 1834 as a combination of the empirical Boyle's law, Charles's law, Avogadro's law, and Gay-Lussac's law. The ideal gas law is often written in an empirical form:

<span class="mw-page-title-main">Bernoulli's principle</span> Principle relating to fluid dynamics

Bernoulli's principle is a key concept in fluid dynamics that relates pressure, speed and height. Bernoulli's principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure or the fluid's potential energy. The principle is named after the Swiss mathematician and physicist Daniel Bernoulli, who published it in his book Hydrodynamica in 1738. Although Bernoulli deduced that pressure decreases when the flow speed increases, it was Leonhard Euler in 1752 who derived Bernoulli's equation in its usual form.

<span class="mw-page-title-main">Work (physics)</span> Process of energy transfer to an object via force application through displacement

In physics, work is the energy transferred to or from an object via the application of force along a displacement. In its simplest form, for a constant force aligned with the direction of motion, the work equals the product of the force strength and the distance traveled. A force is said to do positive work if when applied it has a component in the direction of the displacement of the point of application. A force does negative work if it has a component opposite to the direction of the displacement at the point of application of the force.

Time dilation is the difference in elapsed time as measured by two clocks, either due to a relative velocity between them, or a difference in gravitational potential between their locations. When unspecified, "time dilation" usually refers to the effect due to velocity.

In linear algebra, it is often important to know which vectors have their directions unchanged by a linear transformation. An eigenvector or characteristic vector is such a vector. Thus an eigenvector of a linear transformation is scaled by a constant factor when the linear transformation is applied to it: . The corresponding eigenvalue, characteristic value, or characteristic root is the multiplying factor .

<span class="mw-page-title-main">Capacitor</span> Passive two-terminal electronic component that stores electrical energy in an electric field

A capacitor is an electronic device that stores electrical energy in an electric field by accumulating electric charges on two closely spaced surfaces that are insulated from each other. It is a passive electronic component with two terminals.

<span class="mw-page-title-main">Viscosity</span> Resistance of a fluid to shear deformation

The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity is defined scientifically as a force multiplied by a time divided by an area. Thus its SI units are newton-seconds per square metre, or pascal-seconds.

<span class="mw-page-title-main">Velocity</span> Speed and direction of a motion

Velocity is the speed in combination with the direction of motion of an object. Velocity is a fundamental concept in kinematics, the branch of classical mechanics that describes the motion of bodies.

References

  1. Rieg T, Richter K, Osswald H, Vallon V (October 2004). "Kidney function in mice: thiobutabarbital versus alpha-chloralose anesthesia". Naunyn-Schmiedeberg's Archives of Pharmacology. 370 (4): 320–3. doi:10.1007/s00210-004-0982-x. PMID   15549274. S2CID   25580831.
  2. Entry on Thiobutabarbital . at: Römpp Online . Georg Thieme Verlag, retrieved 15. Juni 2014.