Kavalactone

Last updated
The general structure of the kavalactones, without the R1-R2 -O-CH2-O- bridge and with all possible C=C double bonds shown. Kavalactone-general-numbered.svg
The general structure of the kavalactones, without the R1-R2 -O-CH2-O- bridge and with all possible C=C double bonds shown.

Kavalactones are a class of lactone compounds found in kava roots and Alpinia zerumbet (shell ginger) [1] and in several Gymnopilus, Phellinus and Inonotus fungi. [2] Some kavalactones are bioactive. They are responsible for the psychoactive, analgesic, euphoric and sedative effects of kava. [3] [4]

Contents

Bioactivity

Kava extract interacts with many pharmaceuticals and herbal medications. In human volunteers, in vivo inhibition includes CYP1A2 [5] and CYP2E1 [6] through use of probe drugs to measure inhibition.

Research

Its anxiolytic and hepatotoxic properties have been investigated. [7] [8] [9]

The major kavalactones (except for des­methoxy­yangonin) potentiate GABAA receptors, which may underlie the anxiolytic and sedative properties of kava. Further, inhibition of the reuptake of nor­epi­neph­rine and dopamine, binding to the CB1 receptor, [10] inhibition of voltage-gated sodium and calcium channels, and monoamine oxidase B reversible inhibition are additional pharmacological actions that have been reported for kavalactones. [11]

Toxicity

Several kavalactones (e.g., methysticin and yangonin) affect a group of enzymes involved in metabolism, called the CYP450 system. Hepatotoxicity occurred in a small portion of previously healthy kava users, [8] [12] particularly from extracts, as opposed to whole root powders.

Compounds

At least 18 different kavalactones are known, [1] with methysticin being the first identified. [13] Multiple analogues, such as ethysticin, have also been isolated. [14] Some consist of a substituted α-pyrone as the lactone, while others are partially saturated.

The average elimination half-life of kavalactones typically present in kava root is 9 hr. [15]

NameStructureR1R2R3R4
Yangonin 1-OCH3-H-H-H
10-methoxyyangonin 1-OCH3-H-OCH3-H
11-methoxyyangonin 1-OCH3-OCH3-H-H
11-hydroxyyangonin 1-OCH3-OH-H-H
Desmethoxyyangonin 1-H-H-H-H
11-methoxy-12-hydroxydehydrokavain 1-OH-OCH3-H-H
7,8-dihydroyangonin 2-OCH3-H-H-H
Kavain 3-H-H-H-H
5-hydroxykavain 3-H-H-H-OH
5,6-dihydroyangonin 3-OCH3-H-H-H
7,8-dihydrokavain 4-H-H-H-H
5,6,7,8-tetrahydroyangonin 4-OCH3-H-H-H
5,6-dehydromethysticin 5-O-CH2-O--H-H
Methysticin 7-O-CH2-O--H-H
7,8-dihydromethysticin 8-O-CH2-O--H-H
Kavalactones: General structures
Structure 1 Kavalactone-general.svg
Structure 1
Structure 2 Kavalactone-general-2.svg
Structure 2
Structure 3 Kavalactone-general-3.svg
Structure 3
Structure 4 Kavalactone-general-4.svg
Structure 4
Structure 5 Kavalactone-general-5.svg
Structure 5
Structure 6 Kavalactone-general-6.svg
Structure 6
Structure 7 Kavalactone-general-7.svg
Structure 7
Structure 8 Kavalactone-general-8.svg
Structure 8

Biosynthesis

The kavalactone biosynthetic pathway in Piper methysticum was described in 2019. [16]

See also

References

  1. 1 2 Tadiparthi, Krishnaji; Anand, Pragya (2021). "A Review on Synthetic Approaches towards Kavalactones". Synthesis. 53 (19): 3469–3484. doi:10.1055/s-0040-1706044. S2CID   236392304.
  2. Hatfield, G. M.; Brady, L. R. (1969). "Occurrence of bis-noryangonin in Gymnopilus spectabilis". Journal of Pharmaceutical Sciences. 58 (10): 1298–1299. Bibcode:1969JPhmS..58.1298H. doi:10.1002/jps.2600581039. PMID   5388695.
  3. You, Hualin; He, Min; Pan, Di; Fang, Guanqin; Chen, Yan; Zhang, Xu; Shen, Xiangchun; Zhang, Nenling (2022). "Kavalactones isolated from Alpinia zerumbet (Pers.) Burtt. Et Smith with protective effects against human umbilical vein endothelial cell damage induced by high glucose" . Natural Product Research. 36 (22): 5740–5746. doi:10.1080/14786419.2021.2023866. PMID   34989299. S2CID   245771677.
  4. James M. Mathews; Amy S. Etheridge; Sherry R. Black (2002). "Inhibition of Human Cytochrome P450 Activities by Kava Extract and Kavalactones" . Drug Metabolism and Disposition. 30 (11): 1153–1157. doi:10.1124/dmd.30.11.1153. PMID   12386118.
  5. Russmann, S; Lauterburg, B; Barguil, Y; Choblet, E; Cabalion, P; Rentsch, K; Wenk, M (2005). "Traditional aqueous kava extracts inhibit cytochrome P450 1A2 in humans: Protective effect against environmental carcinogens?" . Clinical Pharmacology & Therapeutics . 77 (5): 453–454. doi:10.1016/j.clpt.2005.01.021. PMID   15900292. S2CID   36009940.
  6. Gurley, B; Gardner, S; Hubbard, M; Williams, D; Gentry, W; Khan, I; Shah, A (2005). "In vivo effects of goldenseal, kava kava, black cohosh, and valerian on human cytochrome P450 1A2, 2D6, 2E1, and 3A4/5 phenotypes". Clinical Pharmacology & Therapeutics . 77 (5): 415–426. doi:10.1016/j.clpt.2005.01.009. PMC   1894911 . PMID   15900287.
  7. Sarris, Jerome; LaPorte, Emma; Schweitzer, Isaac (2011-01-01). "Kava: A Comprehensive Review of Efficacy, Safety, and Psychopharmacology". Australian & New Zealand Journal of Psychiatry. 45 (1): 27–35. doi:10.3109/00048674.2010.522554. PMID   21073405. S2CID   42935399.
  8. 1 2 Teschke, R; Lebot, V (2011). "Proposal for a kava quality standardization code". Food and Chemical Toxicology. 49 (10): 2503–16. doi:10.1016/j.fct.2011.06.075. PMID   21756963.
  9. Wang, J; Qu, W; Bittenbender, H. C.; Li, Q. X. (2013). "Kavalactone content and chemotype of kava beverages prepared from roots and rhizomes of Isa and Mahakea varieties and extraction efficiency of kavalactones using different solvents". Journal of Food Science and Technology. 52 (2): 1164–1169. doi:10.1007/s13197-013-1047-2. PMC   4325077 . PMID   25694734.
  10. Ligresti A, Villano R, Allarà M, Ujváry I, Di Marzo V (2012). "Kavalactones and the endocannabinoid system: the plant-derived yangonin is a novel CB₁ receptor ligand". Pharmacol. Res. 66 (2): 163–9. doi:10.1016/j.phrs.2012.04.003. PMID   22525682.
  11. Singh YN, Singh NN (2002). "Therapeutic potential of kava in the treatment of anxiety disorders". CNS Drugs. 16 (11): 731–43. doi:10.2165/00023210-200216110-00002. PMID   12383029. S2CID   34322458.
  12. Teschke, R; Qiu, S. X.; Xuan, T. D.; Lebot, V (2011). "Kava and kava hepatotoxicity: Requirements for novel experimental, ethnobotanical and clinical studies based on a review of the evidence". Phytotherapy Research. 25 (9): 1263–74. doi:10.1002/ptr.3464. PMID   21442674. S2CID   19142750.
  13. Naumov, P.; Dragull, K.; Yoshioka, M.; Tang, C.-S.; Ng, S. W. (2008). "Structural Characterization of Genuine (-)-Pipermethystine, (-)-Epoxypipermethystine, (+)-Dihydromethysticin and Yangonin from the Kava Plant (Piper methysticum)" . Natural Product Communications. 3 (8): 1333–1336. doi: 10.1177/1934578X0800300819 . S2CID   92030132.
  14. Shulgin, A. (1973). "The narcotic pepper - the chemistry and pharmacology of Piper methysticum and related species". Bulletin on Narcotics (2): 59–74.
  15. "Kava (Piper methysticum): Pharmacodynamics/Kinetics". Sigma-Aldrich Co. LLC. 2010.
  16. Pluskal, Tomáš; Torrens-Spence, Michael P.; Fallon, Timothy R.; De Abreu, Andrea; Shi, Cindy H.; Weng, Jing-Ke (2019-07-22). "The biosynthetic origin of psychoactive kavalactones in kava". Nature Plants. 5 (8). Springer Science and Business Media LLC: 867–878. Bibcode:2019NatPl...5..867P. doi:10.1038/s41477-019-0474-0. hdl: 1721.1/124692 . ISSN   2055-0278. PMID   31332312. S2CID   198139136.