Flavone

Last updated
Flavone
Flavon num.svg
Names
IUPAC name
2-phenylchromen-4-one
Identifiers
3D model (JSmol)
157598
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.007.623 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 208-383-8
1224858
KEGG
PubChem CID
RTECS number
  • DJ3100630
UNII
  • InChI=1S/C15H10O2/c16-13-10-15(11-6-2-1-3-7-11)17-14-9-5-4-8-12(13)14/h1-10H
    Key: VHBFFQKBGNRLFZ-UHFFFAOYSA-N
  • C1=CC=C(C=C1)C2=CC(=O)C3=CC=CC=C3O2
Properties
C15H10O2
Molar mass 222.243 g·mol−1
Appearancewhite solid
Melting point 96–97 °C (205–207 °F; 369–370 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Flavone is an organic compound with the formula C6H4OC3H(Ph)O. A white solid, flavone is a derivative of chromone with a phenyl (Ph) substituent adjacent to the ether group. The compound is of little direct practical importance, but susbstituted derivatives, the flavones and flavonoids are a large class of nutritionally important natural products. [1] Flavone can be prepared in the laboratory by cyclization of 2-hydroxacetophenone. [2] Isomeric with flavone is isoflavone, where the phenyl group is adjacent to the ketone.

Related Research Articles

<span class="mw-page-title-main">Phenyl group</span> Cyclic chemical group (–C₆H₅)

In organic chemistry, the phenyl group, or phenyl ring, is a cyclic group of atoms with the formula C6H5, and is often represented by the symbol Ph. Phenyl group is closely related to benzene and can be viewed as a benzene ring, minus a hydrogen, which may be replaced by some other element or compound to serve as a functional group. Phenyl group has six carbon atoms bonded together in a hexagonal planar ring, five of which are bonded to individual hydrogen atoms, with the remaining carbon bonded to a substituent. Phenyl groups are commonplace in organic chemistry. Although often depicted with alternating double and single bonds, phenyl group is chemically aromatic and has equal bond lengths between carbon atoms in the ring.

<span class="mw-page-title-main">Aryl group</span> Molecular groups or substituents derived from an aromatic ring

In organic chemistry, an aryl is any functional group or substituent derived from an aromatic ring, usually an aromatic hydrocarbon, such as phenyl and naphthyl. "Aryl" is used for the sake of abbreviation or generalization, and "Ar" is used as a placeholder for the aryl group in chemical structure diagrams, analogous to “R” used for any organic substituent. “Ar” is not to be confused with the elemental symbol for argon.

A glucoside is a glycoside that is derived from glucose. Glucosides are common in plants, but rare in animals. Glucose is produced when a glucoside is hydrolysed by purely chemical means, or decomposed by fermentation or enzymes.

<span class="mw-page-title-main">Triphenylmethane</span> Chemical compound

Triphenylmethane, or triphenyl methane, is the hydrocarbon with the formula (C6H5)3CH. This colorless solid is soluble in nonpolar organic solvents and not in water. Triphenylmethane is the basic skeleton of many synthetic dyes called triarylmethane dyes, many of them are pH indicators, and some display fluorescence. A trityl group in organic chemistry is a triphenylmethyl group Ph3C, e.g. triphenylmethyl chloride (trityl chloride) and the triphenylmethyl radical (trityl radical).

Isoflavones are substituted derivatives of isoflavone, a type of naturally occurring isoflavonoids, many of which act as phytoestrogens in mammals. Isoflavones are produced almost exclusively by the members of the bean family, Fabaceae (Leguminosae).

<span class="mw-page-title-main">Thiophenol</span> Chemical compound

Thiophenol is an organosulfur compound with the formula C6H5SH, sometimes abbreviated as PhSH. This foul-smelling colorless liquid is the simplest aromatic thiol. The chemical structures of thiophenol and its derivatives are analogous to phenols except the oxygen atom in the hydroxyl group (-OH) bonded to the aromatic ring is replaced by a sulfur atom. The prefix thio- implies a sulfur-containing compound and when used before a root word name for a compound which would normally contain an oxygen atom, in the case of 'thiol' that the alcohol oxygen atom is replaced by a sulfur atom.

<span class="mw-page-title-main">Baker–Venkataraman rearrangement</span>

The Baker–Venkataraman rearrangement is the chemical reaction of 2-acetoxyacetophenones with base to form 1,3-diketones.

<span class="mw-page-title-main">Phenyllithium</span> Chemical compound

Phenyllithium or lithobenzene is an organometallic agent with the empirical formula C6H5Li. It is most commonly used as a metalating agent in organic syntheses and a substitute for Grignard reagents for introducing phenyl groups in organic syntheses. Crystalline phenyllithium is colorless; however, solutions of phenyllithium are various shades of brown or red depending on the solvent used and the impurities present in the solute.

<span class="mw-page-title-main">Dakin oxidation</span>

The Dakin oxidation is an organic redox reaction in which an ortho- or para-hydroxylated phenyl aldehyde or ketone reacts with hydrogen peroxide in base to form a benzenediol and a carboxylate. Overall, the carbonyl group is oxidised, whereas the H2O2 is reduced.

<span class="mw-page-title-main">Triphenylmethanol</span> Chemical compound

Triphenylmethanol is an organic compound. It is a white crystalline solid that is insoluble in water and petroleum ether, but well soluble in ethanol, diethyl ether, and benzene. In strongly acidic solutions, it produces an intensely yellow color, due to the formation of a stable "trityl" carbocation. Many derivatives of triphenylmethanol are important dyes.

Phosphole is the organic compound with the chemical formula C
4
H
4
PH
; it is the phosphorus analog of pyrrole. The term phosphole also refers to substituted derivatives of the parent heterocycle. These compounds are of theoretical interest but also serve as ligands for transition metals and as precursors to more complex organophosphorus compounds.

<span class="mw-page-title-main">Phenylarsonic acid</span> Chemical compound

Phenylarsonic acid is the chemical compound with the formula C6H5AsO(OH)2, commonly abbreviated PhAsO3H2. This colourless solid is an organic derivative of arsenic acid, AsO(OH)3, where one OH group has been replaced by a phenyl group. The compound is a buffering agent and a precursor to other organoarsenic compounds, some of which are used in animal nutrition, e.g. 4-hydroxy-3-nitrobenzenearsonic acid.

<span class="mw-page-title-main">Sodium phenoxide</span> Chemical Compound

Sodium phenoxide (sodium phenolate) is an organic compound with the formula NaOC6H5. It is a white crystalline solid. Its anion, phenoxide, also known as phenolate, is the conjugate base of phenol. It is used as a precursor to many other organic compounds, such as aryl ethers.

<span class="mw-page-title-main">Diphenylphosphine</span> Chemical compound

Diphenylphosphine, also known as diphenylphosphane, is an organophosphorus compound with the formula (C6H5)2PH. This foul-smelling, colorless liquid is easily oxidized in air. It is a precursor to organophosphorus ligands for use as catalysts.

<span class="mw-page-title-main">Diphenyl ether</span> Chemical compound

Diphenyl ether is the organic compound with the formula (C6H5)2O. It is a colorless solid. This, the simplest diaryl ether, has a variety of niche applications.

<span class="mw-page-title-main">Organobismuth chemistry</span>

Organobismuth chemistry is the chemistry of organometallic compounds containing a carbon to bismuth chemical bond. Applications are few. The main bismuth oxidation states are Bi(III) and Bi(V) as in all higher group 15 elements. The energy of a bond to carbon in this group decreases in the order P > As > Sb > Bi. The first reported use of bismuth in organic chemistry was in oxidation of alcohols by Challenger in 1934 (using Ph3Bi(OH)2). Knowledge about methylated species of bismuth in environmental and biological media is limited.

Organosodium chemistry is the chemistry of organometallic compounds containing a carbon to sodium chemical bond. The application of organosodium compounds in chemistry is limited in part due to competition from organolithium compounds, which are commercially available and exhibit more convenient reactivity.

<i>alpha</i>-Naphthoflavone Chemical compound

alpha-Naphthoflavone, also known as 7,8-benzoflavone and 2-phenyl-benzo(h)chromen-4-one, is a synthetic flavone derivative. It can be prepared from 2-naphthol and cinnamaldehyde.

<span class="mw-page-title-main">Kostanecki acylation</span>

The Kostanecki acylation is a method used in organic synthesis to form chromones or coumarins by acylation of O-hydroxyaryl ketones with aliphatic acid anhydrides, followed by cyclization. If benzoic anhydride is used, a particular type of chromone called a flavone is obtained.

<span class="mw-page-title-main">Phenylsodium</span> Chemical compound

Phenylsodium C6H5Na is an organosodium compound. Solid phenylsodium was first isolated by Nef in 1903. Although the behavior of phenylsodium and phenyl magnesium bromide are similar, the organosodium compound is very rarely used.

References

  1. Gaspar, Alexandra; Matos, Maria João; Garrido, Jorge; Uriarte, Eugenio; Borges, Fernanda (2014). "Chromone: A Valid Scaffold in Medicinal Chemistry". Chemical Reviews. 114 (9): 4960–4992. doi:10.1021/cr400265z.
  2. T. S. Wheeler (1952). "Flavone". Organic Syntheses. 32: 72. doi:10.15227/orgsyn.032.0072.