6-Hydroxyflavone

Last updated

6-Hydroxyflavone
6-hydroxyflavone.svg
6-Hydroxyflavone molecule ball.png
Names
IUPAC name
6-Hydroxyflavone
Systematic IUPAC name
6-Hydroxy-2-phenyl-4H-1-benzopyran-4-one
Other names
6-Monohydroxyflavone; 6-Hydroxy-2-phenyl-4-benzopyrone
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.027.005 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 229-704-8
KEGG
PubChem CID
UNII
  • InChI=1S/C15H10O3/c16-11-6-7-14-12(8-11)13(17)9-15(18-14)10-4-2-1-3-5-10/h1-9,16H Yes check.svgY
    Key: GPZYYYGYCRFPBU-UHFFFAOYSA-N Yes check.svgY
  • C1=CC=C(C=C1)C2=CC(=O)C3=C(O2)C=CC(=C3)O
  • O=C\1c3c(O/C(=C/1)c2ccccc2)ccc(O)c3
Properties
C15H10O3
Molar mass 238.242 g·mol−1
Melting point 234 to 236 °C (453 to 457 °F; 507 to 509 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

6-Hydroxyflavone is a flavone, a type of chemical compound. It is one of the noncompetitive inhibitors of cytochrome P450 2C9. It is reported in Crocus and leaves of Barleria prionitis Linn. (a common Acanthaceae from India). [1] 6-Hydroxyflavone shows anxiolytic activity in a mouse model. [2] Compared to the full agonist diazepam, 6-hydroxyflavone was approximately 200 times less potent. [2]

Related Research Articles

An anxiolytic is a medication or other intervention that reduces anxiety. This effect is in contrast to anxiogenic agents which increase anxiety. Anxiolytic medications are used for the treatment of anxiety disorders and their related psychological and physical symptoms.

<span class="mw-page-title-main">Suriclone</span> Chemical compound

Suriclone (Suril) is a sedative and anxiolytic drug in the cyclopyrrolone family of drugs. Other cyclopyrrolone drugs include zopiclone and pagoclone.

<span class="mw-page-title-main">Ocinaplon</span> Chemical compound

Ocinaplon is an anxiolytic drug in the pyrazolopyrimidine family of drugs. Other pyrazolopyrimidine drugs include zaleplon and indiplon.

<span class="mw-page-title-main">Panadiplon</span> Chemical compound

Panadiplon (U-78875) is an anxiolytic drug with a novel chemical structure that is not closely related to other drugs of this type. It has a similar pharmacological profile to the benzodiazepine family of drugs, but with mainly anxiolytic properties and relatively little sedative or amnestic effect, and so is classified as a nonbenzodiazepine anxiolytic.

<span class="mw-page-title-main">Cyclopyrrolones</span> Class of chemical compounds

Cyclopyrrolones are a family of hypnotic and anxiolytic nonbenzodiazepine drugs with similar pharmacological profiles to the benzodiazepine derivatives.

<span class="mw-page-title-main">Pazinaclone</span> Chemical compound

Pazinaclone (DN-2327) is a sedative and anxiolytic drug in the cyclopyrrolone family of drugs. Some other cyclopyrrolone drugs include zopiclone and eszopiclone.

<span class="mw-page-title-main">Saripidem</span> Chemical compound

Saripidem is a sedative and anxiolytic drug in the imidazopyridine family, which is related to the better known drugs zolpidem and alpidem.

<span class="mw-page-title-main">L-838,417</span> Chemical compound

L-838,417 is an anxiolytic drug used in scientific research. It has similar effects to benzodiazepine drugs, but is structurally distinct and so is classed as a nonbenzodiazepine anxiolytic. The compound was developed by Merck, Sharp and Dohme.

<span class="mw-page-title-main">RWJ-51204</span> Chemical compound

RWJ-51204 is an anxiolytic drug used in scientific research. It has similar effects to benzodiazepine drugs, but is structurally distinct and so is classed as a nonbenzodiazepine anxiolytic.

<span class="mw-page-title-main">Baicalin</span> Chemical compound

As baicalin is a flavone glycoside, it is a flavonoid. It is the glucuronide of baicalein.

<span class="mw-page-title-main">Tracazolate</span> Chemical compound

Tracazolate (ICI-136,753) is an anxiolytic drug which is used in scientific research. It is a pyrazolopyridine derivative, most closely related to pyrazolopyrimidine drugs such as zaleplon, and is one of a structurally diverse group of drugs known as the nonbenzodiazepines which act at the same receptor targets as benzodiazepines but have distinct chemical structures.

<span class="mw-page-title-main">ELB-139</span> Chemical compound

ELB-139 (LS-191,811) is an anxiolytic drug with a novel chemical structure, which is used in scientific research. It has similar effects to benzodiazepine drugs, but is structurally distinct and so is classed as a nonbenzodiazepine anxiolytic.

<span class="mw-page-title-main">TPA-023</span> Chemical compound

TPA-023 (MK-0777) is an anxiolytic drug with a novel chemical structure, which is used in scientific research. It has similar effects to benzodiazepine drugs, but is structurally distinct and so is classed as a nonbenzodiazepine anxiolytic. It is a mixed, subtype-selective ligand of the benzodiazepine site of α1, α2, α3, and α5-containing GABAA receptors, where it acts as a partial agonist at benzodiazepine sites of the α2 and α3-containing subtypes, but as a silent antagonist at α1 and α5-containing subtypes. It has primarily anxiolytic and anticonvulsant effects in animal tests, but with no sedative effects even at 50 times the effective anxiolytic dose.

<span class="mw-page-title-main">Isamoltane</span> Drug used in scientific research

Isamoltane (CGP-361A) is a drug used in scientific research. It acts as an antagonist at the β-adrenergic, 5-HT1A, and 5-HT1B receptors. It has about five times the potency for the 5-HT1B receptor over the 5-HT1A receptor. It has anxiolytic effects in rodents.

<span class="mw-page-title-main">Ricasetron</span> Chemical compound

Ricasetron (BRL-46470) is a drug which acts as a selective antagonist at the serotonin 5-HT3 receptor. It has antiemetic effects as with other 5-HT3 antagonists, and also has anxiolytic effects significantly stronger than other related drugs, and with less side effects than benzodiazepine anxiolytics. However, it has never been developed for medical use.

<span class="mw-page-title-main">Pyrimidinylpiperazine</span> Chemical compound

1-(2-Pyrimidinyl)piperazine (1-PP, 1-PmP) is a chemical compound and piperazine derivative. It is known to act as an antagonist of the α2-adrenergic receptor (Ki = 7.3–40 nM) and, to a much lesser extent, as a partial agonist of the 5-HT1A receptor (Ki = 414 nM; Emax = 54%). It has negligible affinity for the dopamine D2, D3, and D4 receptors (Ki > 10,000 nM) and does not appear to have significant affinity for the α1-adrenergic receptors. Its crystal structure has been determined.

Hydroxyflavone may refer to the following chemical compounds:

<span class="mw-page-title-main">Umespirone</span> Anxiolytic and antipsychotic drug

Umespirone (KC-9172) is a drug of the azapirone class which possesses anxiolytic and antipsychotic properties. It behaves as a 5-HT1A receptor partial agonist (Ki = 15 nM), D2 receptor partial agonist (Ki = 23 nM), and α1-adrenoceptor receptor antagonist (Ki = 14 nM), and also has weak affinity for the sigma receptor (Ki = 558 nM). Unlike many other anxiolytics and antipsychotics, umespirone produces minimal sedation, cognitive/memory impairment, catalepsy, and extrapyramidal symptoms.

<span class="mw-page-title-main">WAY-208466</span> Chemical compound

WAY-208466 is a potent and highly selective full agonist of the 5-HT6 receptor. It increases GABA levels in the cerebral cortex and tolerance does not appear to occur to this action upon chronic administration. Animal studies have shown that WAY-208466 produces antidepressant and anxiolytic effects in rodents and it may also be useful in the treatment of obsessive-compulsive disorder.

<span class="mw-page-title-main">Enciprazine</span> Chemical compound

Enciprazine is an anxiolytic and antipsychotic of the phenylpiperazine class which was never marketed. It shows high affinity for the α1-adrenergic receptor and 5-HT1A receptor, among other sites. The drug was initially anticipated to produce ortho-methoxyphenylpiperazine (oMeOPP), a serotonin receptor agonist with high affinity for the 5-HT1A receptor, as a significant active metabolite, but subsequent research found this not to be the case.

References

  1. M Daniel (2006). Medicinal Plants: Chemistry and Properties. Science Publishers. p. 78. ISBN   978-1-57808-395-4.
  2. 1 2 Ren, Lihuan; Wang, Feng; Xu, Zhiwen; Chan, Wing Man; Zhao, Cunyou; Xue, Hong (2010), "GABAA receptor subtype selectivity underlying anxiolytic effect of 6-hydroxyflavone", Biochemical Pharmacology, 79 (9): 1337–1344, doi:10.1016/j.bcp.2009.12.024, PMID   20067772