Tricetin

Last updated
Tricetin
Tricetin.svg
Names
IUPAC name
3′,4′,5,5′,7-Pentahydroxyflavone
Systematic IUPAC name
5,7-Dihydroxy-2-(3,4,5-trihydroxyphenyl)-4H-1-benzopyran-4-one
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.237.320 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C15H10O7/c16-7-3-8(17)14-9(18)5-12(22-13(14)4-7)6-1-10(19)15(21)11(20)2-6/h1-5,16-17,19-21H
    Key: ARSRJFRKVXALTF-UHFFFAOYSA-N
  • C1=C(C=C(C(=C1O)O)O)C2=CC(=O)C3=C(C=C(C=C3O2)O)O
Properties
C15H10O7
Molar mass 302.23 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Tricetin is a flavone, a type of flavonoid. It is a rare aglycone found in the pollen of members of the Myrtaceae, subfamily Leptospermoideae, such as Eucalyptus globulus . [1] This compound shows anticancer effects on human breast adenocarcinoma MCF-7 cells. [2] Moreover. a potent anti-inflammatory effect of tricetin has also been demonstrated in a model of acute pancreatitis. [3] This observation was explained by the compound's radical scavenging effects, its inhibitory effect on the DNA damage sensor enzyme poly (ADP-ribose) polymerase-1 (PARP1) and PARP1-mediated cell death and suppression of inflammatory gene expression.

See also

Related Research Articles

<span class="mw-page-title-main">Flavonoid</span> Class of plant and fungus secondary metabolites

Flavonoids are a class of polyphenolic secondary metabolites found in plants, and thus commonly consumed in the diets of humans.

<span class="mw-page-title-main">Glycoside</span> Molecule in which a sugar is bound to another functional group

In chemistry, a glycoside is a molecule in which a sugar is bound to another functional group via a glycosidic bond. Glycosides play numerous important roles in living organisms. Many plants store chemicals in the form of inactive glycosides. These can be activated by enzyme hydrolysis, which causes the sugar part to be broken off, making the chemical available for use. Many such plant glycosides are used as medications. Several species of Heliconius butterfly are capable of incorporating these plant compounds as a form of chemical defense against predators. In animals and humans, poisons are often bound to sugar molecules as part of their elimination from the body.

<span class="mw-page-title-main">Poly (ADP-ribose) polymerase</span> Family of proteins

Poly (ADP-ribose) polymerase (PARP) is a family of proteins involved in a number of cellular processes such as DNA repair, genomic stability, and programmed cell death.

<span class="mw-page-title-main">Naringenin</span> Chemical compound

Naringenin is a flavorless, colorless flavanone, a type of flavonoid. It is the predominant flavanone in grapefruit, and is found in a variety of fruits and herbs.

<span class="mw-page-title-main">Gingerol</span> Chemical compound

Gingerol ([6]-gingerol) is a phenolic phytochemical compound found in fresh ginger that activates spice receptors on the tongue. It is normally found as a pungent yellow oil in the ginger rhizome, but can also form a low-melting crystalline solid. This chemical compound is found in all members of the Zingiberaceae family and is high in concentrations in the grains of paradise as well as an African Ginger species.

<span class="mw-page-title-main">Myricetin</span> Chemical compound

Myricetin is a member of the flavonoid class of polyphenolic compounds, with antioxidant properties. Common dietary sources include vegetables, fruits, nuts, berries, tea, and red wine. Myricetin is structurally similar to fisetin, luteolin, and quercetin and is reported to have many of the same functions as these other members of the flavonol class of flavonoids. Reported average intake of myricetin per day varies depending on diet, but has been shown in the Netherlands to average 23 mg/day.

<span class="mw-page-title-main">Genistein</span> Chemical compound

Genistein (C15H10O5) is a naturally occurring compound that structurally belongs to a class of compounds known as isoflavones. It is described as an angiogenesis inhibitor and a phytoestrogen.

<span class="mw-page-title-main">Annexin A1</span> Protein-coding gene in the species Homo sapiens

Annexin A1, also known as lipocortin I, is a protein that is encoded by the ANXA1 gene in humans.

<span class="mw-page-title-main">Baicalin</span> Chemical compound

As baicalin is a flavone glycoside, it is a flavonoid. It is the glucuronide of baicalein.

<span class="mw-page-title-main">Baicalein</span> Chemical compound

Baicalein (5,6,7-trihydroxyflavone) is a flavone, a type of flavonoid, originally isolated from the roots of Scutellaria baicalensis and Scutellaria lateriflora. It is also reported in Oroxylum indicum and Thyme. It is the aglycone of baicalin. Baicalein is one of the active ingredients of Sho-Saiko-To, which is a Chinese classic herbal formula, and listed in Japan as Kampo medicine. As a Chinese herbal supplement, it is believed to enhance liver health.

<span class="mw-page-title-main">Tricin</span> Chemical compound

Tricin is a chemical compound. It is an O-methylated flavone, a type of flavonoid. It can be found in rice bran and sugarcane.

<span class="mw-page-title-main">Wogonin</span> Chemical compound

Wogonin is an O-methylated flavone, a flavonoid-like chemical compound which is found in Scutellaria baicalensis.

<span class="mw-page-title-main">Scutellarin</span> Chemical compound

Scutellarin is a flavone, a type of phenolic chemical compound. It can be found in the Asian "barbed skullcap" Scutellaria barbata and the north American plant S. lateriflora both of which have been used in traditional medicine. The compound is found only in trace amounts in the "Chinese skullcap" Scutellaria baicalensis, another plant used in traditional Chinese medicine.

<span class="mw-page-title-main">Fisetin</span> Chemical compound

Fisetin (7,3′,4′-flavon-3-ol) is a plant flavonol from the flavonoid group of polyphenols. It can be found in many plants, where it serves as a yellow/ochre colouring agent. It is also found in many fruits and vegetables, such as strawberries, apples, persimmons, onions and cucumbers. Its chemical formula was first described by Austrian chemist Josef Herzig in 1891.

<span class="mw-page-title-main">Genistin</span> Chemical compound

Genistin is an isoflavone found in a number of dietary plants like soy and kudzu. It was first isolated in 1931 from the 90% methanol extract of a soybean meal, when it was found that hydrolysis with hydrochloric acid produced 1 mole each of genistein and glucose. Chemically it is the 7-O-beta-D-glucoside form of genistein and is the predominant form of the isoflavone naturally occurring in plants. In fact, studies in the 1970s revealed that 99% of the isoflavonoid compounds in soy are present as their glucosides. The glucosides are converted by digestive enzymes in the digestive system to exert their biological effects. Genistin is also converted to a more familiar genistein, thus, the biological activities including antiatherosclerotic, estrogenic and anticancer effects are analogous.

<span class="mw-page-title-main">Cynaroside</span> Chemical compound

Cynaroside is a flavone, a flavonoid-like chemical compound. It is a 7-O-glucoside of luteolin.

<span class="mw-page-title-main">PARP inhibitor</span> Pharmacological enzyme inhibitors of poly (ADP-ribose) polymerases

PARP inhibitors are a group of pharmacological inhibitors of the enzyme poly ADP ribose polymerase (PARP).

<span class="mw-page-title-main">Veliparib</span> Chemical compound

Veliparib (ABT-888) is a potential anti-cancer drug acting as a PARP inhibitor. It kills cancer cells by blocking a protein called PARP, thereby preventing the repair of DNA or genetic damage in cancer cells and possibly making them more susceptible to anticancer treatments. Veliparib may make whole brain radiation treatment work more effectively against brain metastases from NSCLC. It has been shown to potentiate the effects of many chemotherapeutics, and as such has been part of many combination clinical trials.

<span class="mw-page-title-main">Convallatoxin</span> Chemical compound

Convallatoxin is a glycoside extracted from Convallaria majalis.

Parthanatos is a form of programmed cell death that is distinct from other cell death processes such as necrosis and apoptosis. While necrosis is caused by acute cell injury resulting in traumatic cell death and apoptosis is a highly controlled process signalled by apoptotic intracellular signals, parthanatos is caused by the accumulation of Poly(ADP ribose) (PAR) and the nuclear translocation of apoptosis-inducing factor (AIF) from mitochondria. Parthanatos is also known as PARP-1 dependent cell death. PARP-1 mediates parthanatos when it is over-activated in response to extreme genomic stress and synthesizes PAR which causes nuclear translocation of AIF. Parthanatos is involved in diseases that afflict hundreds of millions of people worldwide. Well known diseases involving parthanatos include Parkinson's disease, stroke, heart attack, and diabetes. It also has potential use as a treatment for ameliorating disease and various medical conditions such as diabetes and obesity.

References

  1. Campos, Maria G.; Webby, Rosemary F.; Markham, Kenneth R. (2002). "The unique occurrence of the flavone aglycone tricetin in Myrtaceae pollen". Zeitschrift für Naturforschung C. 57 (9–10): 944–946. doi: 10.1515/znc-2002-9-1031 . PMID   12440738. S2CID   29128828 .
  2. Hsu, Ya-Ling; Uen, Yih-Huei; Chen, Yi; Liang, Hsin-Lin; Kuo, Po-Lin (2009). "Tricetin, a dietary flavonoid, inhibits proliferation of human breast adenocarcinoma MCF-7 cells by blocking cell cycle progression and inducing apoptosis". Journal of Agricultural and Food Chemistry. 57 (18): 8688–8695. doi:10.1021/jf901053x. PMID   19705844. S2CID   19856762.
  3. Nagy-Pénzes, Máté; Hajnády, Zoltán; Regdon, Zsolt; Demény, Máté Á; Kovács, Katalin; El-Hamoly, Tarek; Maléth, József; Hegyi, Péter; Hegedűs, Csaba; Virág, László (June 2022). "Tricetin Reduces Inflammation and Acinar Cell Injury in Cerulein-Induced Acute Pancreatitis: The Role of Oxidative Stress-Induced DNA Damage Signaling". Biomedicines. 10 (6): 1371. doi: 10.3390/biomedicines10061371 . ISSN   2227-9059. PMC   9219693 . PMID   35740393.