Poly (ADP-ribose) polymerase

Last updated
poly [ADP-ribose] polymerase
Identifiers
Aliases Poly (ADP-ribose) polymerasePARPNAD+ ADP-ribosyltransferaseIPR008288poly(adenosine diphosphate ribose) polymerasepoly(ADP-ribose) synthasepoly(ADP-ribose) synthetaseNAD+:poly(adenine-diphosphate-D-ribosyl)-acceptor ADP-D-ribosyl-transferaseADP-ribosyltransferase (polymerizing)Poly(ADP-ribose) Polymerases
External IDs GeneCards:
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human
NAD+ ADP-ribosyltransferase
Identifiers
EC no. 2.4.2.30
CAS no. 58319-92-9
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins
ADP ribose ADP ribose.svg
ADP ribose
Nicotinamide adenine dinucleotide NAD+ phys.svg
Nicotinamide adenine dinucleotide

Poly (ADP-ribose) polymerase (PARP) is a family of proteins involved in a number of cellular processes such as DNA repair, genomic stability, and programmed cell death. [1]

Contents

Members of PARP family

The PARP family comprises 17 members (10 putative). [2] They vary greatly in structure and function within the cell.

Structure

PARP is composed of four domains of interest: a DNA-binding domain, a caspase-cleaved domain (see below), an auto-modification domain, and a catalytic domain. The DNA-binding domain is composed of two zinc finger motifs. In the presence of damaged DNA (base pair-excised), the DNA-binding domain will bind the DNA and induce a conformational shift. It has been shown that this binding occurs independent of the other domains. This is integral in a programmed cell death model based on caspase cleavage inhibition of PARP. The auto-modification domain is responsible for releasing the protein from the DNA after catalysis. Also, it plays an integral role in cleavage-induced inactivation.

Functions

The main role of PARP (found in the cell nucleus) is to detect and initiate an immediate cellular response to metabolic, chemical, or radiation-induced single-strand DNA breaks (SSB) by signaling the enzymatic machinery involved in the SSB repair.

Once PARP detects a SSB, it binds to the DNA, undergoes a structural change, and begins the synthesis of a polymeric adenosine diphosphate ribose (poly (ADP-ribose) or PAR) chain, which acts as a signal for the other DNA-repairing enzymes. Target enzymes include DNA ligase III (LigIII), DNA polymerase beta (polβ), and scaffolding proteins such as X-ray cross-complementing gene 1 (XRCC1). After repairing, the PAR chains are degraded via Poly(ADP-ribose) glycohydrolase (PARG). [3]

NAD+ is required as substrate for generating ADP-ribose monomers. It has been thought that overactivation of PARP may deplete the stores of cellular NAD+ and induce a progressive ATP depletion and necrotic cell death, since glucose oxidation is inhibited. [4] But more recently it was suggested that inhibition of hexokinase activity leads to defects in glycolysis (Andrabi, PNAS 2014). Basal PARP activity also regulates basal bioenergetics. [5] Note below that PARP is inactivated by caspase-3 cleavage during programmed cell death.

PARP enzymes are essential in a number of cellular functions, [6] including expression of inflammatory genes: [7] PARP1 is required for the induction of ICAM-1 gene expression by cardiac myocytes [8] and smooth muscle cells, in response to TNF. [9]

Activity

The catalytic domain is responsible for Poly (ADP-ribose) polymerization. This domain has a highly conserved motif that is common to all members of the PARP family. PAR polymer can reach lengths of up to 200 nucleotides before inducing apoptotic processes. The formation of PAR polymer is similar to the formation of DNA polymer from nucleoside triphosphates. Normal DNA synthesis requires that a pyrophosphate act as the leaving group, leaving a single phosphate group linking deoxyribose sugars. PAR is synthesized using nicotinamide (NAM) as the leaving group. This leaves a pyrophosphate as the linking group between ribose sugars rather than single phosphate groups. This creates some special bulk to a PAR bridge, which may have an additional role in cell signaling.

Role in repairing DNA nicks

One important function of PARP is assisting in the repair of single-strand DNA nicks. It binds sites with single-strand breaks through its N-terminal zinc fingers and will recruit XRCC1, DNA ligase III, DNA polymerase beta, and a kinase to the nick. This is called base excision repair (BER). PARP-2 has been shown to oligomerize with PARP-1 and, therefore, is also implicated in BER. The oligomerization has also been shown to stimulate PARP catalytic activity. PARP-1 is also known for its role in transcription through remodeling of chromatin by PARylating histones and relaxing chromatin structure, thus allowing transcription complex to access genes.

PARP-1 and PARP-2 are activated by DNA single-strand breaks, and both PARP-1 and PARP-2 knockout mice have severe deficiencies in DNA repair, and increased sensitivity to alkylating agents or ionizing radiation. [10]

PARP activity and lifespan

PARP activity (which is mainly due to PARP1) measured in the permeabilized mononuclear leukocyte blood cells of thirteen mammalian species (rat, guinea pig, rabbit, marmoset, sheep, pig, cattle, pigmy chimpanzee, horse, donkey, gorilla, elephant and man) correlates with maximum lifespan of the species. [11] The difference in activity between the longest-lived (humans) and shortest-lived (rat) species tested was 5-fold. Although the enzyme kinetics (unimolecular rate constant (kcat), Km and kcat/km) of the two enzymes were not significantly different, human PARP-1 was found to have a two-fold higher specific automodification capacity than the rat enzyme, which the authors posited could account, in part, for the higher PARP activity in humans than rats. [12] Lymphoblastoid cell lines established from blood samples of humans who were centenarians (100 years old or older) have significantly higher PARP activity than cell lines from younger (20 to 70 years old) individuals, [13] again indicating a linkage between longevity and repair capability.

These findings suggest that PARP-mediated DNA repair capability contributes to mammalian longevity. Thus, these findings support the DNA damage theory of aging, which assumes that un-repaired DNA damage is the underlying cause of aging, and that DNA repair capability contributes to longevity. [14] [15]

Role of tankyrases

The tankyrases (TNKs) are PARPs that comprise ankyrin repeats, an oligomerization domain (SAM), and a PARP catalytic domain (PCD). Tankyrases are also known as PARP-5a and PARP-5b. They were named for their interaction with the telomere-associated TERF1 proteins and ankyrin repeats. They may allow the removal of telomerase-inhibiting complexes from chromosome ends to allow for telomere maintenance. Through their SAM domain and ANKs, they can oligomerize and interact with many other proteins, such as TRF1, TAB182 ( TNKS1BP1 ), GRB14 , IRAP, NuMa, EBNA-1, and Mcl-1. They have multiple roles in the cell, like vesicular trafficking through its interaction in GLUT4 vesicles with insulin-responsive aminopeptidase (IRAP). It also plays a role in mitotic spindle assembly through its interaction with nuclear mitotic apparatus protein 1 (NuMa), therefore allowing the necessary bipolar orientation. In the absence of TNKs, mitosis arrest is observed in pre-anaphase through Mad2 spindle checkpoint. TNKs can also PARsylate Mcl-1L and Mcl-1S and inhibit both their pro- and anti-apoptotic function; relevance of this is not yet known.

Role in cell death

PARP can be activated in cells experiencing stress and/or DNA damage. Activated PARP can deplete the cell of ATP in an attempt to repair the damaged DNA. ATP depletion in a cell leads to lysis and cell death (necrosis). [16] [17] PARP also has the ability to induce programmed cell death, via the production of PAR, which stimulates mitochondria to release AIF. [18] This mechanism appears to be caspase-independent. Cleavage of PARP, by enzymes such as caspases or cathepsins, typically inactivates PARP. The size of the cleavage fragments can give insight into which enzyme was responsible for the cleavage and can be useful in determining which cell death pathway has been activated.

Role in epigenetic DNA modification

CCCTC-binding factor (CTCF) induces PAR accumulation. [19] ADP-ribose polymers, either free or PARP1 bound, are able to inhibit DNA methyltransferase activity at CpG sites. [20] Thus, CTCF is involved in the cross-talk between poly(ADP-ribosyl)ation and DNA methylation, an important epigenetic regulatory factor. [19]

Therapeutic inhibition

A substantial body of preclinical and clinical data has accumulated with PARP inhibitors in various forms of cancer. In this context, the role of PARP in single-strand DNA break repair is relevant, leading to replication-associated lesions that cannot be repaired if homologous recombination repair (HRR) is defective, and leading to the synthetic lethality of PARP inhibitors in HRR-defective cancer. HRR defects are classically associated with BRCA1 and 2 mutations associated with familial breast and ovarian cancer, but there may be many other causes of HRR defects. Thus, PARP inhibitors of various types (e.g. olaparib) for BRCA mutant breast and ovarian cancers can extend beyond these tumors if appropriate biomarkers can be developed to identify HRR defects. There are several additional classes of novel PARP inhibitors that are in various stages of clinical development. [21]

Another substantial body of data relates to the role of PARP in selected non-oncologic indications. In a number of severe, acute diseases (such as stroke, neurotrauma, circulatory shock, and acute myocardial infarction), PARP inhibitors exert therapeutic benefit (e.g. reduction of infarct size or improvement of organ function). There are also observational data demonstrating PARP activation in human tissue samples. In these disease indications, PARP overactivation due to oxidative and nitrative stress drives cell necrosis and pro-inflammatory gene expression, which contributes to disease pathology. As the clinical trials with PARP inhibitors in various forms of cancer progress, it is hoped that a second line of clinical investigations, aimed at testing of PARP inhibitors for various non-oncologic indications, will be initiated, in a process called "therapeutic repurposing". [22]

Inactivation

PARP is inactivated by caspase cleavage. It is believed that normal inactivation occurs in systems where DNA damage is extensive. In these cases, more energy would be invested in repairing damage than is feasible, so that energy is instead retrieved for other cells in the tissue through programmed cell death. Besides degradation, there is recent evidence about reversible downregulation mechanisms for PARP, among these an "autoregulatory loop", which is driven by PARP1 itself and modulated by the YY1 transcription factor. [23]

While in vitro cleavage by caspase occurs throughout the caspase family, preliminary data suggest that caspase-3 and caspase-7 are responsible for in vivo cleavage. Cleavage occurs at aspartic acid 214 and glycine 215, separating PARP into a 24  kDa and 89 kDa segment. The smaller moiety includes the zinc finger motif requisite in DNA binding. The 89 kDa fragment includes the auto-modification domain and catalytic domain. The putative mechanism of PCD activation via PARP inactivation relies on the separation of the DNA-binding region and the auto-modification domain. The DNA-binding region is capable of doing so independent of the rest of the protein, cleaved or not. It is unable, however, to dissociate without the auto-modification domain. In this way, the DNA-binding domain will attach to a damaged site and be unable to effect repair, as it no longer has the catalytic domain. The DNA-binding domain prevents other, non-cleaved PARP from accessing the damaged site and initiating repairs. This model suggests that this "sugar plug" can also begin the signal for apoptosis.

Plant PARPs

Roles of poly(ADP-ribosyl)ation in plant responses to DNA damage, infection, and other stresses have been studied. [24] [25] Plant PARP1 is very similar to animal PARP1, but intriguingly, in Arabidopsis thaliana and presumably other plants, PARP2 plays more significant roles than PARP1 in protective responses to DNA damage and bacterial pathogenesis. [26] The plant PARP2 carries PARP regulatory and catalytic domains with only intermediate similarity to PARP1, and it carries N-terminal SAP DNA binding motifs rather than the zinc finger DNA binding motifs of plant and animal PARP1 proteins. [26]

See also

Related Research Articles

<span class="mw-page-title-main">DNA repair</span> Cellular mechanism

DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA damage, resulting in tens of thousands of individual molecular lesions per cell per day. Many of these lesions cause structural damage to the DNA molecule and can alter or eliminate the cell's ability to transcribe the gene that the affected DNA encodes. Other lesions induce potentially harmful mutations in the cell's genome, which affect the survival of its daughter cells after it undergoes mitosis. As a consequence, the DNA repair process is constantly active as it responds to damage in the DNA structure. When normal repair processes fail, and when cellular apoptosis does not occur, irreparable DNA damage may occur, including double-strand breaks and DNA crosslinkages. This can eventually lead to malignant tumors, or cancer as per the two hit hypothesis.

Granzyme B (GrB) is one of the serine protease granzymes most commonly found in the granules of natural killer cells and cytotoxic T cells. It is secreted by these cells along with the pore forming protein perforin to mediate apoptosis in target cells.

c-Jun N-terminal kinases Chemical compounds

c-Jun N-terminal kinases (JNKs), were originally identified as kinases that bind and phosphorylate c-Jun on Ser-63 and Ser-73 within its transcriptional activation domain. They belong to the mitogen-activated protein kinase family, and are responsive to stress stimuli, such as cytokines, ultraviolet irradiation, heat shock, and osmotic shock. They also play a role in T cell differentiation and the cellular apoptosis pathway. Activation occurs through a dual phosphorylation of threonine (Thr) and tyrosine (Tyr) residues within a Thr-Pro-Tyr motif located in kinase subdomain VIII. Activation is carried out by two MAP kinase kinases, MKK4 and MKK7, and JNK can be inactivated by Ser/Thr and Tyr protein phosphatases. It has been suggested that this signaling pathway contributes to inflammatory responses in mammals and insects.

<span class="mw-page-title-main">XRCC1</span> Protein

DNA repair protein XRCC1, also known as X-ray repair cross-complementing protein 1, is a protein that in humans is encoded by the XRCC1 gene. XRCC1 is involved in DNA repair, where it complexes with DNA ligase III.

<span class="mw-page-title-main">ADP-ribosylation</span> Addition of one or more ADP-ribose moieties to a protein.

ADP-ribosylation is the addition of one or more ADP-ribose moieties to a protein. It is a reversible post-translational modification that is involved in many cellular processes, including cell signaling, DNA repair, gene regulation and apoptosis. Improper ADP-ribosylation has been implicated in some forms of cancer. It is also the basis for the toxicity of bacterial compounds such as cholera toxin, diphtheria toxin, and others.

<span class="mw-page-title-main">ETS1</span> Protein-coding gene in the species Homo sapiens

Protein C-ets-1 is a protein that in humans is encoded by the ETS1 gene. The protein encoded by this gene belongs to the ETS family of transcription factors.

<span class="mw-page-title-main">PARP1</span> Mammalian protein found in Homo sapiens

Poly [ADP-ribose] polymerase 1 (PARP-1) also known as NAD+ ADP-ribosyltransferase 1 or poly[ADP-ribose] synthase 1 is an enzyme that in humans is encoded by the PARP1 gene. It is the most abundant of the PARP family of enzymes, accounting for 90% of the NAD+ used by the family. PARP1 is mostly present in cell nucleus, but cytosolic fraction of this protein was also reported.

<span class="mw-page-title-main">Tankyrase</span> Enzyme

Tankyrase, also known as tankyrase 1, is an enzyme that in humans is encoded by the TNKS gene. It inhibits the binding of TERF1 to telomeric DNA. Tankyrase attracts substantial interest in cancer research through its interaction with AXIN1 and AXIN2, which are negative regulators of pro-oncogenic β-catenin signaling. Importantly, activity in the β-catenin destruction complex can be increased by tankyrase inhibitors and thus such inhibitors are a potential therapeutic option to reduce the growth of β-catenin-dependent cancers.

<span class="mw-page-title-main">PARP4</span> Enzyme

Poly [ADP-ribose] polymerase 4 is an enzyme that in humans is encoded by the PARP4 gene.

<span class="mw-page-title-main">PARP3</span> Protein-coding gene in the species Homo sapiens

Poly [ADP-ribose] polymerase 3 is an enzyme that in humans is encoded by the PARP3 gene.

<span class="mw-page-title-main">PARP2</span> Protein-coding gene in the species Homo sapiens

Poly [ADP-ribose] polymerase 2 is an enzyme that in humans is encoded by the PARP2 gene. It is one of the PARP family of enzymes.

<span class="mw-page-title-main">Sirtuin 6</span> Protein-coding gene in the species Homo sapiens

Sirtuin 6 is a stress responsive protein deacetylase and mono-ADP ribosyltransferase enzyme encoded by the SIRT6 gene. In laboratory research, SIRT6 appears to function in multiple molecular pathways related to aging, including DNA repair, telomere maintenance, glycolysis and inflammation. SIRT6 is member of the mammalian sirtuin family of proteins, which are homologs to the yeast Sir2 protein.

<span class="mw-page-title-main">PARP inhibitor</span> Pharmacological enzyme inhibitors of poly (ADP-ribose) polymerases

PARP inhibitors are a group of pharmacological inhibitors of the enzyme poly ADP ribose polymerase (PARP).

<span class="mw-page-title-main">Veliparib</span> Chemical compound

Veliparib (ABT-888) is a potential anti-cancer drug acting as a PARP inhibitor. It kills cancer cells by blocking a protein called PARP, thereby preventing the repair of DNA or genetic damage in cancer cells and possibly making them more susceptible to anticancer treatments. Veliparib may make whole brain radiation treatment work more effectively against brain metastases from NSCLC. It has been shown to potentiate the effects of many chemotherapeutics, and as such has been part of many combination clinical trials.

<span class="mw-page-title-main">Macro domain</span>

In molecular biology, the Macro domain or A1pp domain is a module of about 180 amino acids which can bind ADP-ribose, an NAD metabolite, or related ligands. Binding to ADP-ribose can be either covalent or non-covalent: in certain cases it is believed to bind non-covalently, while in other cases it appears to bind both non-covalently through a zinc finger motif, and covalently through a separate region of the protein.

<span class="mw-page-title-main">3-Aminobenzamide</span> Chemical compound

3-Aminobenzamide is a benzamide. It is an off-white powder and has the chemical formula C7H8N2O.

Immunogenic cell death is any type of cell death eliciting an immune response. Both accidental cell death and regulated cell death can result in immune response. Immunogenic cell death contrasts to forms of cell death that do not elicit any response or even mediate immune tolerance.

Parthanatos is a form of programmed cell death that is distinct from other cell death processes such as necrosis and apoptosis. While necrosis is caused by acute cell injury resulting in traumatic cell death and apoptosis is a highly controlled process signalled by apoptotic intracellular signals, parthanatos is caused by the accumulation of Poly(ADP ribose) (PAR) and the nuclear translocation of apoptosis-inducing factor (AIF) from mitochondria. Parthanatos is also known as PARP-1 dependent cell death. PARP-1 mediates parthanatos when it is over-activated in response to extreme genomic stress and synthesizes PAR which causes nuclear translocation of AIF. Parthanatos is involved in diseases that afflict hundreds of millions of people worldwide. Well known diseases involving parthanatos include Parkinson's disease, stroke, heart attack, and diabetes. It also has potential use as a treatment for ameliorating disease and various medical conditions such as diabetes and obesity.

Ted M. Dawson is an American neurologist and neuroscientist. He is the Leonard and Madlyn Abramson Professor in Neurodegenerative Diseases and Director of the Institute for Cell Engineering at Johns Hopkins University School of Medicine. He has joint appointments in the Department of Neurology, Neuroscience and Department of Pharmacology and Molecular Sciences.

<span class="mw-page-title-main">7-Methylguanine</span> Chemical compound

7-Methylguanine is a modified purine nucleobase. It is a methylated version of guanine. The 7-methylguanine nucleoside is called 7-methylguanosine. However, the free 7-methylguanine base is not involved in the synthesis of nucleotides and not incorporated directly into nucleic acids. 7-Methylguanine is a natural inhibitor of poly (ADP-ribose) polymerase (PARP) and tRNA guanine transglycosylase (TGT) - and thus may exert anticancer activity. For example, it was demonstrated that 7-methylguanine could accelerate apoptotic death of BRCA1-deficient breast cancer cells induced by cisplatin and doxorubicin.

References

  1. Herceg Z, Wang ZQ (June 2001). "Functions of poly(ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death". Mutation Research. 477 (1–2): 97–110. doi:10.1016/s0027-5107(01)00111-7. PMID   11376691.
  2. Manasaryan, G; Suplatov, D; Pushkarev, S; Drobot, V; Kuimov, A; Švedas, V; Nilov, D (2021). "Bioinformatic analysis of the nicotinamide binding site in poly(ADP-ribose) polymerase family proteins". Cancers. 13 (6): 1201. doi: 10.3390/cancers13061201 . PMC   8002165 . PMID   33801950.
  3. Isabelle M, Moreel X, Gagné JP, Rouleau M, Ethier C, Gagné P, et al. (April 2010). "Investigation of PARP-1, PARP-2, and PARG interactomes by affinity-purification mass spectrometry". Proteome Science. 8: 22. doi: 10.1186/1477-5956-8-22 . PMC   2861645 . PMID   20388209.
  4. Szabó C, Zingarelli B, O'Connor M, Salzman AL (March 1996). "DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite". Proceedings of the National Academy of Sciences of the United States of America. 93 (5): 1753–8. Bibcode:1996PNAS...93.1753S. doi: 10.1073/pnas.93.5.1753 . PMC   39853 . PMID   8700830.
  5. Módis K, Gero D, Erdélyi K, Szoleczky P, DeWitt D, Szabo C (March 2012). "Cellular bioenergetics is regulated by PARP1 under resting conditions and during oxidative stress". Biochemical Pharmacology. 83 (5): 633–43. doi:10.1016/j.bcp.2011.12.014. PMC   3272837 . PMID   22198485.
  6. Piskunova TS, Yurova MN, Ovsyannikov AI, Semenchenko AV, Zabezhinski MA, Popovich IG, et al. (2008). "Deficiency in Poly(ADP-ribose) Polymerase-1 (PARP-1) Accelerates Aging and Spontaneous Carcinogenesis in Mice". Current Gerontology and Geriatrics Research. 2008: 754190. doi: 10.1155/2008/754190 . PMC   2672038 . PMID   19415146.
  7. Espinoza LA, Smulson ME, Chen Z (May 2007). "Prolonged poly(ADP-ribose) polymerase-1 activity regulates JP-8-induced sustained cytokine expression in alveolar macrophages". Free Radical Biology & Medicine. 42 (9): 1430–40. doi:10.1016/j.freeradbiomed.2007.01.043. PMID   17395016.
  8. Zingarelli B, Salzman AL, Szabó C (July 1998). "Genetic disruption of poly (ADP-ribose) synthetase inhibits the expression of P-selectin and intercellular adhesion molecule-1 in myocardial ischemia/reperfusion injury". Circulation Research. 83 (1): 85–94. doi: 10.1161/01.res.83.1.85 . PMID   9670921.
  9. Zerfaoui M, Suzuki Y, Naura AS, Hans CP, Nichols C, Boulares AH (January 2008). "Nuclear translocation of p65 NF-kappaB is sufficient for VCAM-1, but not ICAM-1, expression in TNF-stimulated smooth muscle cells: Differential requirement for PARP-1 expression and interaction". Cellular Signalling. 20 (1): 186–94. doi:10.1016/j.cellsig.2007.10.007. PMC   2278030 . PMID   17993261.
  10. Bürkle A, Brabeck C, Diefenbach J, Beneke S (May 2005). "The emerging role of poly(ADP-ribose) polymerase-1 in longevity". The International Journal of Biochemistry & Cell Biology. 37 (5): 1043–53. doi:10.1016/j.biocel.2004.10.006. PMID   15743677.
  11. Grube K, Bürkle A (December 1992). "Poly(ADP-ribose) polymerase activity in mononuclear leukocytes of 13 mammalian species correlates with species-specific life span". Proceedings of the National Academy of Sciences of the United States of America. 89 (24): 11759–63. Bibcode:1992PNAS...8911759G. doi: 10.1073/pnas.89.24.11759 . PMC   50636 . PMID   1465394.
  12. Beneke S, Alvarez-Gonzalez R, Bürkle A (October 2000). "Comparative characterisation of poly(ADP-ribose) polymerase-1 from two mammalian species with different life span". Experimental Gerontology. 35 (8): 989–1002. doi:10.1016/s0531-5565(00)00134-0. PMID   11121685. S2CID   37233083.
  13. Muiras ML, Müller M, Schächter F, Bürkle A (April 1998). "Increased poly(ADP-ribose) polymerase activity in lymphoblastoid cell lines from centenarians". Journal of Molecular Medicine. 76 (5): 346–54. doi:10.1007/s001090050226. PMID   9587069. S2CID   24616650.
  14. Bernstein C, Bernstein H (2004). "Aging and sex, DNA repair in". In Meyers RA (ed.). Encyclopedia of molecular cell biology and molecular medicine. Weinheim: Wiley-VCH Verlag. pp. 53–98. doi:10.1002/3527600906.mcb.200200009. ISBN   3-527-30542-4.
  15. Bernstein H, Payne CM, Bernstein C, Garewal H, Dvorak K (2008). Kimura H, Suzuki A (eds.). Cancer and aging as consequences of un-repaired DNA damage. New York: Nova Science Publishers, Inc. pp. 1–47. ISBN   978-1604565812. Archived from the original on 2014-10-25. Retrieved 2013-05-10.
  16. Virág L, Salzman AL, Szabó C (October 1998). "Poly(ADP-ribose) synthetase activation mediates mitochondrial injury during oxidant-induced cell death". Journal of Immunology. 161 (7): 3753–9. doi:10.4049/jimmunol.161.7.3753. PMID   9759901. S2CID   5734113.
  17. Ha HC, Snyder SH (November 1999). "Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion". Proceedings of the National Academy of Sciences of the United States of America. 96 (24): 13978–82. Bibcode:1999PNAS...9613978H. doi: 10.1073/pnas.96.24.13978 . PMC   24176 . PMID   10570184.
  18. Yu SW, Andrabi SA, Wang H, Kim NS, Poirier GG, Dawson TM, Dawson VL (November 2006). "Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death". Proceedings of the National Academy of Sciences of the United States of America. 103 (48): 18314–9. Bibcode:2006PNAS..10318314Y. doi: 10.1073/pnas.0606528103 . PMC   1838748 . PMID   17116881.
  19. 1 2 Guastafierro T, Cecchinelli B, Zampieri M, Reale A, Riggio G, Sthandier O, Zupi G, Calabrese L, Caiafa P (August 2008). "CCCTC-binding factor activates PARP-1 affecting DNA methylation machinery". J Biol Chem. 283 (32): 21873–80. doi: 10.1074/jbc.M801170200 . PMC   2494936 . PMID   18539602.
  20. Zardo G, Reale A, De Matteis G, Buontempo S, Caiafa P (June 2003). "A role for poly(ADP-ribosyl)ation in DNA methylation". Biochem Cell Biol. 81 (3): 197–208. doi:10.1139/o03-050. PMID   12897854.
  21. Curtin NJ, Szabo C (December 2013). "Therapeutic applications of PARP inhibitors: anticancer therapy and beyond". Molecular Aspects of Medicine. 34 (6): 1217–56. doi:10.1016/j.mam.2013.01.006. PMC   3657315 . PMID   23370117.
  22. Berger NA, Besson VC, Boulares AH, Bürkle A, Chiarugi A, Clark RS, et al. (January 2018). "Opportunities for the repurposing of PARP inhibitors for the therapy of non-oncological diseases". British Journal of Pharmacology. 175 (2): 192–222. doi:10.1111/bph.13748. PMC   5758399 . PMID   28213892.
  23. Doetsch M, Gluch A, Poznanović G, Bode J, Vidaković M (2012). "YY1-binding sites provide central switch functions in the PARP-1 gene expression network". PLOS ONE. 7 (8): e44125. Bibcode:2012PLoSO...744125D. doi: 10.1371/journal.pone.0044125 . PMC   3429435 . PMID   22937159.
  24. Briggs AG, Bent AF (July 2011). "Poly(ADP-ribosyl)ation in plants". Trends in Plant Science. 16 (7): 372–80. doi:10.1016/j.tplants.2011.03.008. PMID   21482174.
  25. Feng B, Liu C, Shan L, He P (December 2016). "Protein ADP-Ribosylation Takes Control in Plant-Bacterium Interactions". PLOS Pathogens. 12 (12): e1005941. doi: 10.1371/journal.ppat.1005941 . PMC   5131896 . PMID   27907213.
  26. 1 2 Song J, Keppler BD, Wise RR, Bent AF (May 2015). "PARP2 Is the Predominant Poly(ADP-Ribose) Polymerase in Arabidopsis DNA Damage and Immune Responses". PLOS Genetics. 11 (5): e1005200. doi: 10.1371/journal.pgen.1005200 . PMC   4423837 . PMID   25950582.