Myophosphorylase

Last updated
phosphorylase, glycogen; muscle (McArdle disease, glycogen storage disease type V)
3MSC.png
Myophosphorylase [1]
Identifiers
SymbolPYGM
NCBI gene 5837
HGNC 9726
OMIM 608455
RefSeq NM_005609
UniProt P11217
Other data
EC number 2.4.1.1
Locus Chr. 11 q12-q13.2
Search for
Structures Swiss-model
Domains InterPro

Myophosphorylase or glycogen phosphorylase, muscle associated (PYGM) is the muscle isoform of the enzyme glycogen phosphorylase and is encoded by the PYGM gene. This enzyme helps break down glycogen (a form of stored carbohydrate) into glucose-1-phosphate (not glucose), so it can be used within the muscle cell. Mutations in this gene are associated with McArdle disease (GSD-V, myophosphorylase deficiency), a glycogen storage disease of muscle. [2]

Contents

Myophosphorylase comes in two forms: form 'a' is phosphorylated by phosphorylase kinase, form 'b' is not phosphorylated. Form 'a' is de-phosphorylated into form 'b' by the enzyme phosphoprotein phosphatase, which is activated by elevated insulin.

Both forms 'a' and 'b' of myophosphorylase have two conformational states: active (R or relaxed) and inactive (T or tense). When either form 'a' or 'b' are in the active state, then the enzyme converts glycogen into glucose-1-phosphate.

Myophosphorylase-b is allosterically activated by elevated AMP within the cell, and allosterically inactivated by elevated ATP and/or glucose-6-phosphate. Myophosphorylase-a is active, unless allosterically inactivated by elevated glucose within the cell. In this way, myophosphorylase-a is the more active of the two forms as it will continue to convert glycogen into glucose-1-phosphate even with high levels of glycogen-6-phosphate and ATP. (See Glycogen phosphorylase§Regulation).

Structure

PYGM is located on the q arm of chromosome 11 in position 13.1 and has 20 exons. [2] PYGM, the protein encoded by this gene, is a member of the glycogen phosphorylase family and is a homodimer that associates into a tetramer to form the enzymatically active phosphorylase A. It contains an AMP binding site at p. 76, two sites involved in association of subunits at p. 109 and p. 143, and a site believed to be involved in allosteric control at p. 156. Its structure consists of 24 beta strands, 43 alpha helixes, and 11 turns. PYGM also has the following modified residues: N-acetylserine at p. 2, phosphoserine at p. 15, 2014, 227, 430, 473, 514, 747, and 748, and N6-(pyridoxal phosphate)lysine at p. 681. There is a post-translational modification in which phosphorylation of Ser-15 converts phosphorylase B (unphosphorylated) to phosphorylase A. [3] [4] [5] Alternative splicing results in multiple transcript variants. [2]

Function

Phosphorylase is an important allosteric enzyme in carbohydrate metabolism. This gene, PYGM, encodes a muscle enzyme involved in glycogenolysis. PYGM has a cofactor, pyridoxal 5'-phosphate, that aids this process. PYGM is located in the cytosol, extracellular exosome, and the cytoplasm. Highly similar enzymes encoded by different genes are found in liver and brain. [2] [4] [5]

Catalytic activity

Glycogen phosphorylase catalyses the following reaction: [4] [5] [6]

((1→4)-alpha-D-glucosyl) (n) + phosphate = ((1→4)-alpha-D-glucosyl) (n-1) + alpha-D-glucose 1-phosphate

Clinical significance

A myophosphorylase deficiency is associated with Glycogen storage disease type V (GSD5), also known as "McArdle disease".

A case study suggested that a deficiency in myophosphorylase may be linked with cognitive impairment. Besides muscle, this isoform is present in astrocytes, where it plays a key role in neural energy metabolism. A 55-year-old woman with McArdle disease has expressed cognitive impairment with bilateral dysfunction of prefrontal and frontal cortex. Further studies are needed to assess the validity of this claim. [7]

Additionally, mutations in the genes for myophosphorylase along with deoxyguanosine kinase have been associated with muscle glycogenosis and mitochondrial hepatopathy. The G456A PYGM mutation and duplication in exon 6 of dGK that results in a truncated protein have been associated with phosphorylase deficiency in muscle, cytochrome c oxidase deficiency in liver, severe congenital hypotonia, hepatomegaly, and liver failure. This expands on the current understanding of McArdle disease and suggests that this combination of mutations could result in a complex disease with severe phenotypes. [8]

An autosomal dominant mutation on the PYGM gene impairs activity of myophosphorylase-a, but not myophosphorylase-b. Symptoms include adult-onset muscle weakness and muscle biopsy shows accumulation of the intermediate filament desmin in the myofibers. Unlike McArdle disease (GSD-V, myophosphorylase deficiency), this disease does not have exercise intolerance since glycogenolysis is still possible through allosteric AMP activation of myophosphorylase-b. [9]

Interactions

PYGM has been shown to have 64 binary protein-protein interactions including 21 co-complex interactions. PYGM appears to interact with PRKAB2, WDYHV1, PYGL, PYGB, 5-aminoisatin, 5-nh2_caproyl-isatin, PHKG1, PPP1CA, PPP1R3A, DEGS1, SET, MAP3K3, INPP5K, PACSIN3, CLASP2, NIPSNAP2, SRP72, LMNA, TRAPPC2, DNM2, IGBP1, SGCG, PDE4DIP, PPP1R3B, ARID1B, TTN, INTS4, FAM110A, TRIM54, TRIM55, WWP1, AGTPBP1, POMP, and CDC42BPB. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Glycogen storage disease type V</span> Human disease caused by deficiency of a muscle enzyme

Glycogen storage disease type V, also known as McArdle's disease, is a metabolic disorder, one of the metabolic myopathies, more specifically a muscle glycogen storage disease, caused by a deficiency of myophosphorylase. Its incidence is reported as one in 100,000, roughly the same as glycogen storage disease type I.

<span class="mw-page-title-main">Glycogen storage disease</span> Medical condition

A glycogen storage disease is a metabolic disorder caused by a deficiency of an enzyme or transport protein affecting glycogen synthesis, glycogen breakdown, or glucose breakdown, typically in muscles and/or liver cells.

<span class="mw-page-title-main">Glycogenolysis</span> Breakdown of glycogen

Glycogenolysis is the breakdown of glycogen (n) to glucose-1-phosphate and glycogen (n-1). Glycogen branches are catabolized by the sequential removal of glucose monomers via phosphorolysis, by the enzyme glycogen phosphorylase.

<span class="mw-page-title-main">Phosphoglucomutase</span>

Phosphoglucomutase is an enzyme that transfers a phosphate group on an α-D-glucose monomer from the 1 to the 6 position in the forward direction or the 6 to the 1 position in the reverse direction.

<span class="mw-page-title-main">Phosphofructokinase deficiency</span> Medical condition

Phosphofructokinase deficiency is a rare muscular metabolic disorder, with an autosomal recessive inheritance pattern.

<span class="mw-page-title-main">Phosphorylase</span> Enzymes which catalyze the addition of phosphate groups to molecules

In biochemistry, phosphorylases are enzymes that catalyze the addition of a phosphate group from an inorganic phosphate (phosphate+hydrogen) to an acceptor.

Glycogenesis is the process of glycogen synthesis, in which glucose molecules are added to chains of glycogen for storage. This process is activated during rest periods following the Cori cycle, in the liver, and also activated by insulin in response to high glucose levels.

<span class="mw-page-title-main">Glycogen phosphorylase</span> Class of enzymes

Glycogen phosphorylase is one of the phosphorylase enzymes. Glycogen phosphorylase catalyzes the rate-limiting step in glycogenolysis in animals by releasing glucose-1-phosphate from the terminal alpha-1,4-glycosidic bond. Glycogen phosphorylase is also studied as a model protein regulated by both reversible phosphorylation and allosteric effects.

<span class="mw-page-title-main">Glucose 1-phosphate</span> Chemical compound

Glucose 1-phosphate is a glucose molecule with a phosphate group on the 1'-carbon. It can exist in either the α- or β-anomeric form.

<span class="mw-page-title-main">Glycogen synthase</span> Enzyme class, includes all types of glycogen/starch synthases

Glycogen synthase is a key enzyme in glycogenesis, the conversion of glucose into glycogen. It is a glycosyltransferase that catalyses the reaction of UDP-glucose and n to yield UDP and n+1.

<span class="mw-page-title-main">Glycogen debranching enzyme</span> Mammalian protein found in Homo sapiens

The glycogen debranching enzyme, in humans, is the protein encoded by the gene AGL. This enzyme is essential for the breakdown of glycogen, which serves as a store of glucose in the body. It has separate glucosyltransferase and glucosidase activities.

<span class="mw-page-title-main">Glucose 6-phosphatase</span> Enzyme

The enzyme glucose 6-phosphatase (EC 3.1.3.9, G6Pase; systematic name D-glucose-6-phosphate phosphohydrolase) catalyzes the hydrolysis of glucose 6-phosphate, resulting in the creation of a phosphate group and free glucose:

<span class="mw-page-title-main">Glycogen branching enzyme</span> Mammalian protein involved in glycogen production

1,4-alpha-glucan-branching enzyme, also known as brancher enzyme or glycogen-branching enzyme is an enzyme that in humans is encoded by the GBE1 gene.

<span class="mw-page-title-main">Phosphorylase kinase</span>

Phosphorylase kinase (PhK) is a serine/threonine-specific protein kinase which activates glycogen phosphorylase to release glucose-1-phosphate from glycogen. PhK phosphorylates glycogen phosphorylase at two serine residues, triggering a conformational shift which favors the more active glycogen phosphorylase “a” form over the less active glycogen phosphorylase b.

<span class="mw-page-title-main">PHKB</span> Protein-coding gene in the species Homo sapiens

Phosphorylase b kinase regulatory subunit beta is an enzyme that in humans is encoded by the PHKB gene.

<span class="mw-page-title-main">PHKG2</span> Protein-coding gene in the species Homo sapiens

Phosphorylase b kinase gamma catalytic chain, testis/liver isoform is an enzyme that in humans is encoded by the PHKG2 gene.

<span class="mw-page-title-main">Phosphorylase kinase, alpha 1</span> Protein-coding gene in the species Homo sapiens

Phosphorylase b kinase regulatory subunit alpha, skeletal muscle isoform is an enzyme that in humans is encoded by the PHKA1 gene. It is the muscle isoform of Phosphorylase kinase (PhK).

<span class="mw-page-title-main">Inborn errors of carbohydrate metabolism</span> Medical condition

Inborn errors of carbohydrate metabolism are inborn error of metabolism that affect the catabolism and anabolism of carbohydrates.

<span class="mw-page-title-main">Purine nucleotide cycle</span>

The Purine Nucleotide Cycle is a metabolic pathway in protein metabolism requiring the amino acids aspartate and glutamate. The cycle is used to regulate the levels of adenine nucleotides, in which ammonia and fumarate are generated. AMP converts into IMP and the byproduct ammonia. IMP converts to S-AMP (adenylosuccinate), which then converts to AMP and the byproduct fumarate. The fumarate goes on to produce ATP (energy) via oxidative phosphorylation as it enters the Krebs cycle and then the electron transport chain. Lowenstein first described this pathway and outlined its importance in processes including amino acid catabolism and regulation of flux through glycolysis and the Krebs cycle.

Glycogen phosphorylase, liver form (PYGL), also known as human liver glycogen phosphorylase (HLGP), is an enzyme that in humans is encoded by the PYGL gene on chromosome 14. This gene encodes a homodimeric protein that catalyses the cleavage of alpha-1,4-glucosidic bonds to release glucose-1-phosphate from liver glycogen stores. This protein switches from inactive phosphorylase B to active phosphorylase A by phosphorylation of serine residue 14. Activity of this enzyme is further regulated by multiple allosteric effectors and hormonal controls. Humans have three glycogen phosphorylase genes that encode distinct isozymes that are primarily expressed in liver, brain and muscle, respectively. The liver isozyme serves the glycemic demands of the body in general while the brain and muscle isozymes supply just those tissues. In glycogen storage disease type VI, also known as Hers disease, mutations in liver glycogen phosphorylase inhibit the conversion of glycogen to glucose and results in moderate hypoglycemia, mild ketosis, growth retardation and hepatomegaly. Alternative splicing results in multiple transcript variants encoding different isoforms [provided by RefSeq, Feb 2011].

References

  1. "RCSB Protein Data Bank - Structure Summary for 3MSC - Glycogen phosphorylase complexed with 2-nitrobenzaldehyde-4-(beta-D-glucopyranosyl)-thiosemicarbazone".
  2. 1 2 3 4 "PYGM glycogen phosphorylase, muscle associated [Homo sapiens (human)] - Gene - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-08-31.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  3. Carty TJ, Graves DJ (July 1975). "Regulation of glycogen phosphorylase. Role of the peptide region surrounding the phosphoserine residue in determining enzyme properties". The Journal of Biological Chemistry. 250 (13): 4980–5. doi: 10.1016/S0021-9258(19)41265-9 . PMID   1150650.
  4. 1 2 3 "PYGM - Glycogen phosphorylase, muscle form - Homo sapiens (Human) - PYGM gene & protein". www.uniprot.org. Retrieved 2018-08-31. Creative Commons by small.svg  This article incorporates text available under the CC BY 4.0 license.
  5. 1 2 3 "UniProt: the universal protein knowledgebase". Nucleic Acids Research. 45 (D1): D158–D169. January 2017. doi:10.1093/nar/gkw1099. PMC   5210571 . PMID   27899622.
  6. "Reaction participants of glycogen phosphorylase". www.rhea-db.org. Retrieved 2020-12-26.
  7. Mancuso M, Orsucci D, Volterrani D, Siciliano G (May 2011). "Cognitive impairment and McArdle disease: Is there a link?". Neuromuscular Disorders. 21 (5): 356–8. doi:10.1016/j.nmd.2011.02.013. PMID   21382715. S2CID   36805481.
  8. Mancuso M, Filosto M, Tsujino S, Lamperti C, Shanske S, Coquet M, Desnuelle C, DiMauro S (October 2003). "Muscle glycogenosis and mitochondrial hepatopathy in an infant with mutations in both the myophosphorylase and deoxyguanosine kinase genes". Archives of Neurology. 60 (10): 1445–7. doi: 10.1001/archneur.60.10.1445 . PMID   14568816.
  9. Echaniz-Laguna A, Lornage X, Edelweiss E, Laforêt P, Eymard B, Vissing J, Laporte J, Böhm J (2019-10-01). "O.5A new glycogen storage disorder caused by a dominant mutation in the glycogen myophosphorylase gene (PYGM)". Neuromuscular Disorders. 29: S39. doi:10.1016/j.nmd.2019.06.023. ISSN   0960-8966. S2CID   203582211.
  10. "64 binary interactions found for search term PYGM". IntAct Molecular Interaction Database. EMBL-EBI. Retrieved 2018-09-05.

This article incorporates text from the United States National Library of Medicine, which is in the public domain.