Fucosyltransferase

Last updated
Glycosyltransferase family 10 (fucosyltransferase)
Identifiers
SymbolGlyco_transf_10
Pfam PF00852
InterPro IPR001503
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

A fucosyltransferase is an enzyme that transfers an L-fucose sugar from a GDP-fucose (guanosine diphosphate-fucose) donor substrate to an acceptor substrate. The acceptor substrate can be another sugar such as the transfer of a fucose to a core GlcNAc (N-acetylglucosamine) sugar as in the case of N-linked glycosylation, or to a protein, as in the case of O-linked glycosylation produced by O-fucosyltransferase. There are various fucosyltransferases in mammals, the vast majority of which, are located in the Golgi apparatus. The O-fucosyltransferases have recently been shown to localize to the endoplasmic reticulum (ER).

Contents

Some of the proteins in this group are responsible for the molecular basis of the blood group antigens, surface markers on the outside of the red blood cell membrane. Most of these markers are proteins, but some are carbohydrates attached to lipids or proteins [Reid M.E., Lomas-Francis C. The Blood Group Antigen FactsBook Academic Press, London / San Diego, (1997)]. Galactoside 3(4)-L-fucosyltransferase (EC 2.4.1.65) belongs to the Lewis blood group system and is associated with Le(a/b) antigen.

Classification

Glycosyltransferase family 10 CAZY GT_10 [ permanent dead link ] comprises enzymes with two known activities; galactoside 3(4)-L-fucosyltransferase (EC 2.4.1.65) and galactoside 3-fucosyltransferase (EC 2.4.1.152). The galactoside 3-fucosyltransferases display similarities with the alpha-2 and alpha-6-fucosyltranferases. [1] The biosynthesis of the carbohydrate antigen sialyl-Lewis X (sLe(x)) is dependent on the activity of an galactoside 3-fucosyltransferase. This enzyme catalyses the transfer of fucose from GDP-beta-fucose to the 3-OH of N-acetylglucosamine present in lactosamine acceptors. [2]

Role in preventing UTIs

Robust fucosyltransferase activity discourages bacterial adherence in the urethra of women. [3] This is also mediated by the presence of few bacterial adhesion sites in the bladder and urethra. Women with these receptors who do not have mucosal secretion of the fucosyltransferase enzyme to help block bacterial adherence are more likely to have colonization of E. coli and other coliforms from the rectum and less likely to have lactobacilli in the periurethral area, resulting in frequent episodes of cystitis. [4]

Human proteins containing this domain

FUT1; FUT2; FUT3; FUT4; FUT5; FUT6; FUT7; FUT8; FUT9; FUT10; FUT11;

See also

Related Research Articles

<span class="mw-page-title-main">Glycoprotein</span> Protein with oligosaccharide modifications

Glycoproteins are proteins which contain oligosaccharide chains covalently attached to amino acid side-chains. The carbohydrate is attached to the protein in a cotranslational or posttranslational modification. This process is known as glycosylation. Secreted extracellular proteins are often glycosylated.

Glycosylation is the reaction in which a carbohydrate, i.e. a glycosyl donor, is attached to a hydroxyl or other functional group of another molecule in order to form a glycoconjugate. In biology, glycosylation usually refers to an enzyme-catalysed reaction, whereas glycation may refer to a non-enzymatic reaction.

An oligosaccharide is a saccharide polymer containing a small number of monosaccharides. Oligosaccharides can have many functions including cell recognition and cell adhesion.

<span class="mw-page-title-main">Fucose</span> Chemical compound

Fucose is a hexose deoxy sugar with the chemical formula C6H12O5. It is found on N-linked glycans on the mammalian, insect and plant cell surface. Fucose is the fundamental sub-unit of the seaweed polysaccharide fucoidan. The α(1→3) linked core of fucoidan is a suspected carbohydrate antigen for IgE-mediated allergy.

<span class="mw-page-title-main">GDP-fucose protein O-fucosyltransferase 1</span> Protein-coding gene in the species Homo sapiens

GDP-fucose protein O-fucosyltransferase 1 also known as peptide-O-fucosyltransferase 1 (O-FucT-1) is an enzyme that in humans is encoded by the POFUT1 gene.

<span class="mw-page-title-main">GDP-fucose protein O-fucosyltransferase 2</span> Mammalian protein found in Homo sapiens

GDP-fucose protein O-fucosyltransferase 2 (POFUT2) is an enzyme responsible for adding fucose sugars in O linkage to serine or threonine residues in Thrombospondin repeats. The protein is an inverting glycosyltransferase, which means that the enzyme uses GDP-β-L-fucose as a donor substrate and transfers the fucose in O linkage to the protein producing fucose-α-O-serine/threonine.

<span class="mw-page-title-main">Glycosyltransferase</span> Class of enzymes

Glycosyltransferases are enzymes that establish natural glycosidic linkages. They catalyze the transfer of saccharide moieties from an activated nucleotide sugar to a nucleophilic glycosyl acceptor molecule, the nucleophile of which can be oxygen- carbon-, nitrogen-, or sulfur-based.

hh, or the Bombay blood group, is a rare blood type. This blood phenotype was first discovered in Bombay by Dr. Y. M. Bhende in 1952. It is mostly found in the Indian sub-continent and Iran.

<span class="mw-page-title-main">Sialyltransferase</span> Class of enzymes

Sialyltransferases are enzymes that transfer sialic acid to nascent oligosaccharide. Each sialyltransferase is specific for a particular sugar substrate. Sialyltransferases add sialic acid to the terminal portions of the sialylated glycolipids (gangliosides) or to the N- or O-linked sugar chains of glycoproteins.

The Lewis antigen system is a human blood group system. It is based upon two genes on chromosome 19: FUT3, or Lewis gene; and FUT2, or Secretor gene. Both genes are expressed in glandular epithelia. FUT2 has a dominant allele which codes for an enzyme and a recessive allele which does not produce a functional enzyme. Similarly, FUT3 has a functional dominant allele (Le) and a non-functional recessive allele (le).

In enzymology, a 3-galactosyl-N-acetylglucosaminide 4-alpha-L-fucosyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a 4-galactosyl-N-acetylglucosaminide 3-alpha-L-fucosyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a galactoside 2-alpha-L-fucosyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a glycoprotein 3-alpha-L-fucosyltransferase (EC 2.4.1.214) is an enzyme that catalyzes the chemical reaction

In enzymology, a glycoprotein 6-alpha-L-fucosyltransferase (EC 2.4.1.68) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Fucosyltransferase 3</span> Protein and coding gene in humans

Galactoside 3(4)-L-fucosyltransferase is an enzyme that in humans is encoded by the FUT3 gene.

<span class="mw-page-title-main">FUT1</span> Protein and coding gene in humans

Galactoside 2-alpha-L-fucosyltransferase 1 is an enzyme that in humans is encoded by the FUT1 gene.

<span class="mw-page-title-main">Congenital disorder of glycosylation type IIc</span> Medical condition

Congenital disorder of glycosylation type IIc or Leukocyte adhesion deficiency-2 (LAD2) is a type of leukocyte adhesion deficiency attributable to the absence of neutrophil sialyl-LewisX, a ligand of P- and E-selectin on vascular endothelium. It is associated with SLC35C1.

O-linked glycosylation is the attachment of a sugar molecule to the oxygen atom of serine (Ser) or threonine (Thr) residues in a protein. O-glycosylation is a post-translational modification that occurs after the protein has been synthesised. In eukaryotes, it occurs in the endoplasmic reticulum, Golgi apparatus and occasionally in the cytoplasm; in prokaryotes, it occurs in the cytoplasm. Several different sugars can be added to the serine or threonine, and they affect the protein in different ways by changing protein stability and regulating protein activity. O-glycans, which are the sugars added to the serine or threonine, have numerous functions throughout the body, including trafficking of cells in the immune system, allowing recognition of foreign material, controlling cell metabolism and providing cartilage and tendon flexibility. Because of the many functions they have, changes in O-glycosylation are important in many diseases including cancer, diabetes and Alzheimer's. O-glycosylation occurs in all domains of life, including eukaryotes, archaea and a number of pathogenic bacteria including Burkholderia cenocepacia, Neisseria gonorrhoeae and Acinetobacter baumannii.

N-glycosyltransferase is an enzyme in prokaryotes which transfers individual hexoses onto asparagine sidechains in substrate proteins, using a nucleotide-bound intermediary, within the cytoplasm. They are distinct from regular N-glycosylating enzymes, which are oligosaccharyltransferases that transfer pre-assembled oligosaccharides. Both enzyme families however target a shared amino acid sequence asparagine—-any amino acid except proline—serine or threonine (N–x–S/T), with some variations.

References

  1. Breton C, Oriol R, Imberty A (1998). "Conserved structural features in eukaryotic and prokaryotic fucosyltransferases". Glycobiology. 8 (1): 87–94. doi: 10.1093/glycob/8.1.87 . PMID   9451017.
  2. Britten CJ, Bird MI (1997). "Chemical modification of an alpha 3-fucosyltransferase; definition of amino acid residues essential for enzyme activity". Biochim. Biophys. Acta. 1334 (1): 57–64. doi:10.1016/s0304-4165(96)00076-1. PMID   9042366.
  3. FAQs.org. "Urinary Tract Infections".{{cite journal}}: Cite journal requires |journal= (help)
  4. Medscape.org. "Urinary Tract Infections What Factors Determine the Risk of UTI".{{cite journal}}: Cite journal requires |journal= (help)