UGT2B7

Last updated
UGT2B7
PDB 2o6l EBI.png
Available structures
PDB Human UniProt search: PDBe RCSB
Identifiers
Aliases UGT2B7 , UDPGT 2B9, UDPGT2B7, UDPGTH2, UGT2B9, UDP glucuronosyltransferase family 2 member B7, UDPGT 2B7, UDPGTh-2
External IDs OMIM: 600068 MGI: 3576103 HomoloGene: 128251 GeneCards: UGT2B7
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001074
NM_001330719
NM_001349568

NM_001029867

RefSeq (protein)

NP_001065
NP_001317648
NP_001336497

n/a

Location (UCSC) Chr 4: 69.05 – 69.11 Mb Chr 5: 87.21 – 87.24 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

UGT2B7 (UDP-Glucuronosyltransferase-2B7) is a phase II metabolism isoenzyme found to be active in the liver, kidneys, epithelial cells of the lower gastrointestinal tract and also has been reported in the brain. In humans, UDP-Glucuronosyltransferase-2B7 is encoded by the UGT2B7 gene. [5] [6]

Contents

Function

The UGTs serve a major role in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. UGT2B7 has unique specificity for 3,4-catechol estrogens and estriol, suggesting that it may play an important role in regulating the level and activity of these potent estrogen metabolites.

This enzyme is located on the endoplasmic reticulum and nuclear membranes of cells. Its function is to catalyse the conjugation of a wide variety of lipophilic aglycon substrates with glucuronic acid, using uridine diphosphate glucuronic acid.

Together with UGT2B4, UGT2B7 is capable of glucosidation of hyodesoxycholic acid in the liver, but, unlike the 2B4 isoform, 2B7 is also able to glucuronidate various steroid hormones (androsterone, epitestosterone) and fatty acids. [7] [8] It is also able to conjugate major classes of drugs such as analgesics (morphine), carboxylic nonsteroidal anti-inflammatory drugs (ketoprofen), and anticarcinogens (all-trans retinoic acid). [8] UGT2B7 is the major enzyme isoform responsible for the metabolism of morphine, codeine, norcodeine and other opiates to their corresponding 3- and 6- glucuronides. For example, morphine metabolism produces morphine-3-glucuronide (M3G) which has no analgesic effect and morphine-6-glucuronide (M6G), [9] which has analgesic effects more potent than morphine. [10] As a consequence, altered UGT2B7 activity can significantly affect both the effectiveness and side-effects of morphine, as well as some related opiate drugs. [11] [12] [13] [14] [15]

Structure

Two protein domains (left, orange-yellow, and right, green-blue) dimerize to form UGT2B7. Both domains contain Rossmann-like folds, beta sheets (arrows) surrounded by alpha helices (spirals), which bind UDP-glucuronic acid. UGT2B7 rossmann folds.png
Two protein domains (left, orange-yellow, and right, green-blue) dimerize to form UGT2B7. Both domains contain Rossmann-like folds, beta sheets (arrows) surrounded by alpha helices (spirals), which bind UDP-glucuronic acid.

No structure of a full human UGT enzyme has been determined yet, however Miley et al. resolved a partial UGT2B7 structure of the C-terminal portion showing two dimeric domains with Rossman-like folds in complex. [16] [17] The Rossman fold typically binds nucleotide substrates, in this case the UDP-glucuronic acid cofactor involved in glucuronidation by UGT2B7. Generally, the C-terminus of UGT enzymes is highly conserved and binds the UDP-glucuronic acid cofactor, while the N-terminus (not resolved in this structure) is responsible for substrate binding. [18] This first resolved structure indicated that the C-terminus of one of the two dimers projected into the UDP-glucuronic acid binding site of the second dimer, thus rendering the second dimer ineffective.

Further studies have investigated dimerization of UGT enzyme polymorphisms and found both homodimer and heterodimer (with genetic polymorphisms of UGT2B7 or other UGT enzymes such as UGT1A1) formation are possible, with some combinations having an effect on enzyme activity. [19]

Genetic polymorphism

UGT2B7 is considered to be a highly polymorphic gene. [19] Various research efforts have investigated the potential effect of these polymorphic variants on glucuronidation activity of UGT2B7 and especially its clearance of administered drugs, including anticancer therapies. Decreased glucuronidation activity by genetically variant UGT2B7 could lead to increased toxicity due to elevated levels of the drug remaining or accumulating in a patient's organs especially liver, while increased activity could mean lower efficacy of the administered therapy due to lower than expected levels in the body.

One study found that Han Chinese dye-industry workers exposed to benzidine were at higher risk for developing bladder cancer if they had the UGT2B7 single nucleotide polymorphism (SNP) C802T encoding His268Tyr. [20] The histidine to tyrosine mutation at residue 268 is located in the N-terminal portion of UGT2B7, which binds the xenobiotic substrate as opposed to the C-terminus which binds UDP-glucuronic acid. The speculated mechanism for this increased cancer risk involved increased glucuronidation of benzidine by the mutant UGT2B7 followed by cleavage of the glucuronidated benzidine at urine pH levels, releasing higher concentrations of benzidine in the bladder. Another study looked for a similar association of variant UGT2B7 G900A with the risk of colorectal cancer but found no significant association. [21]

A study of erlotinib clearance in non-small cell lung cancer patients showed no statistical significance for SNPs of UGT2B7, which potentially metabolizes erlotinib as indicated by erlotinib inhibition of UGT2B7. [22] An investigation into the clearance of diclofenac, a nonsteroidal anti-inflammatory drug (NSAID) that can cause serious drug-induced liver injury, showed that mutant UGT2B7 with the C802T SNP had a 6-fold lower clearance of diclofenac than wild-type UGT2B7, possibly contributing to increased liver toxicity in patients with this mutation. [23] Analysis of genetic polymorphisms of UGT2B7 in anti-tuberculosis drug-induced liver injury (ATLI) found no association between mutations of UGT2B7 and ATLI in the studied population. [24]

UGT2B7 is also known to be involved in the metabolism of opioids via glucuronidation, and a study investigating the effect of polymorphisms on the analgesic efficacy of buprenorphine found that the mutation C802T significantly worsened the analgesic response to buprenorphine after thoracic surgery, particularly at longer time-points (48 hours) where this long-lasting opioid is meant to remain effective. [25] This same variant was found separately to have significant effects on the blood plasma concentration of valproic acid administered to epilepsy patients, which may account for some of the individual variability seen with this narrow-therapeutic window treatment. [26] Both of these cases indicate decreased concentrations of drug compound probably due to increased glucuronidation activity of UGT2B7 with the C802T polymorphism.

Summary of some of the recent published effects of the UGT2B7*2 (C802T) polymorphism. UGT2B7 C802T polymorphism effects.png
Summary of some of the recent published effects of the UGT2B7*2 (C802T) polymorphism.

Since UGT2B7 is involved in glucuronidation of many xenobiotic compounds, and polymorphisms of UGT2B7 are prevalent, investigation into potential effects of polymorphisms of UGT2B7 on clearance of pharmacologically relevant compounds is often of interest, as shown by the variety of studies undertaken. The UGT2B7 C802T polymorphism, for example, has been noted at 73% prevalence in Asians and 46% prevalence in Caucasians; therefore, effects of this polymorphism could impact a large portion of the population. [27] However, not all studies find significant changes in clearance due to these genetic polymorphisms. It is not always clear if this is due to the particular polymorphism not affecting enzyme activity of UGT2B7, or because the compound of interest is metabolized by various routes that can mask any differences due to changes in UGT2B7 activity.

Related Research Articles

<span class="mw-page-title-main">Gilbert's syndrome</span> Medical condition

Gilbert syndrome (GS) is a syndrome in which the liver of affected individuals processes bilirubin more slowly than the majority. Many people never have symptoms. Occasionally jaundice may occur.

Glucuronidation is often involved in drug metabolism of substances such as drugs, pollutants, bilirubin, androgens, estrogens, mineralocorticoids, glucocorticoids, fatty acid derivatives, retinoids, and bile acids. These linkages involve glycosidic bonds.

<span class="mw-page-title-main">Glucuronic acid</span> Chemical compound

Glucuronic acid is a uronic acid that was first isolated from urine. It is found in many gums such as gum arabic, xanthan, and kombucha tea and is important for the metabolism of microorganisms, plants and animals.

<span class="mw-page-title-main">Irinotecan</span> Cancer medication

Irinotecan, sold under the brand name Camptosar among others, is a medication used to treat colon cancer, and small cell lung cancer. For colon cancer it is used either alone or with fluorouracil. For small cell lung cancer it is used with cisplatin. It is given intravenously.

<span class="mw-page-title-main">Glucuronosyltransferase</span> Class of enzymes

Uridine 5'-diphospho-glucuronosyltransferase is a microsomal glycosyltransferase that catalyzes the transfer of the glucuronic acid component of UDP-glucuronic acid to a small hydrophobic molecule. This is a glucuronidation reaction.

<span class="mw-page-title-main">UDP glucuronosyltransferase 1 family, polypeptide A1</span>

UDP-glucuronosyltransferase 1-1 also known as UGT-1A is an enzyme that in humans is encoded by the UGT1A1 gene.

<span class="mw-page-title-main">UGT1A6</span>

UDP-glucuronosyltransferase 1-6 is an enzyme that in humans is encoded by the UGT1A6 gene.

<span class="mw-page-title-main">UGT1A10</span>

UDP-glucuronosyltransferase 1-10 is an enzyme that in humans is encoded by the UGT1A10 gene.

<span class="mw-page-title-main">UGT2B15</span> Protein-coding gene in the species Homo sapiens

UDP-glucuronosyltransferase 2B15 is an enzyme that in humans is encoded by the UGT2B15 gene.

<span class="mw-page-title-main">UGT1A3</span>

UDP-glucuronosyltransferase 1-3 is an enzyme that in humans is encoded by the UGT1A3 gene.

<span class="mw-page-title-main">UGT1A4</span> Enzyme and protein-coding gene in humans

UDP-glucuronosyltransferase 1-4 is an enzyme that in humans is encoded by the UGT1A4 gene.

<span class="mw-page-title-main">UGT2B4</span> Protein-coding gene in the species Homo sapiens

UDP glucuronosyltransferase 2 family, polypeptide B4, also known as UGT2B4, is an enzyme that in humans is encoded by the UGT2B4 gene.

<span class="mw-page-title-main">UGT2B17</span> Protein-coding gene in the species Homo sapiens

UDP-glucuronosyltransferase 2B17 is an enzyme that in humans is encoded by the UGT2B17 gene.

UDP glucuronosyltransferase 1 family, polypeptide A cluster (UGT1A) is a human gene locus which includes several UDP glucuronosyltransferases.

<span class="mw-page-title-main">UGT2B10</span> Protein-coding gene in the species Homo sapiens

UDP-glucuronosyltransferase 2B10 is an enzyme that in humans is encoded by the UGT2B10 gene. It is responsible for glucuronidation of nicotine and cotinine.

<span class="mw-page-title-main">Hyodeoxycholic acid</span> Chemical compound

Hyodeoxycholic acid, also known as 3α,6α-Dihydroxy-5β-cholan-24-oic acid or HDCA, is a secondary bile acid, one of the metabolic byproducts of intestinal bacteria. It differs from deoxycholic acid in that the 6α-hydroxyl is in the 12 position in the former. The 6α-hydroxyl group makes HDCA a hydrophilic acid, a property it shares with hyocholic acid. HDCA is present in mammalian species in different proportions. It is the main acid constituent of hog bile, and for this reason it was used industrially as precursor for steroid synthesis before total synthesis became practical.

<span class="mw-page-title-main">UGT1A5</span>

UDP-glucuronosyltransferase 1-5 is an enzyme that in humans is encoded by the UGT1A5 gene.

<span class="mw-page-title-main">UGT1A9</span>

UDP-glucuronosyltransferase 1-9 is an enzyme that in humans is encoded by the UGT1A9 gene.

<span class="mw-page-title-main">UGT2A1</span> Protein-coding gene in the species Homo sapiens

UDP glucuronosyltransferase 2 family, polypeptide B1, also known as UGT2B1, is an enzyme that in humans is encoded by the UGT2B1 gene.

<i>UGT1A7</i> (gene)

UDP glucuronosyltransferase 1 family, polypeptide A7 is a protein that in humans is encoded by the UGT1A7 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000171234 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000070704 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Ritter JK, Sheen YY, Owens IS (May 1990). "Cloning and expression of human liver UDP-glucuronosyltransferase in COS-1 cells. 3,4-catechol estrogens and estriol as primary substrates". The Journal of Biological Chemistry. 265 (14): 7900–6. doi: 10.1016/S0021-9258(19)39016-7 . PMID   2159463.
  6. Monaghan G, Clarke DJ, Povey S, See CG, Boxer M, Burchell B (September 1994). "Isolation of a human YAC contig encompassing a cluster of UGT2 genes and its regional localization to chromosome 4q13". Genomics. 23 (2): 496–9. doi:10.1006/geno.1994.1531. PMID   7835904.
  7. Mackenzie P, Little JM, Radominska-Pandya A (February 2003). "Glucosidation of hyodeoxycholic acid by UDP-glucuronosyltransferase 2B7". Biochemical Pharmacology. 65 (3): 417–21. doi:10.1016/S0006-2952(02)01522-8. PMID   12527334.
  8. 1 2 Barre L, Fournel-Gigleux S, Finel M, Netter P, Magdalou J, Ouzzine M (March 2007). "Substrate specificity of the human UDP-glucuronosyltransferase UGT2B4 and UGT2B7. Identification of a critical aromatic amino acid residue at position 33". The FEBS Journal. 274 (5): 1256–64. doi: 10.1111/j.1742-4658.2007.05670.x . PMID   17263731. S2CID   27151203.
  9. Coffman BL, Rios GR, King CD, Tephly TR (January 1997). "Human UGT2B7 catalyzes morphine glucuronidation". Drug Metabolism and Disposition. 25 (1): 1–4. PMID   9010622.
  10. van Dorp EL, Romberg R, Sarton E, Bovill JG, Dahan A (June 2006). "Morphine-6-glucuronide: morphine's successor for postoperative pain relief?". Anesthesia and Analgesia. 102 (6): 1789–97. doi: 10.1213/01.ane.0000217197.96784.c3 . PMID   16717327. S2CID   18890026.
  11. Coller JK, Christrup LL, Somogyi AA (February 2009). "Role of active metabolites in the use of opioids". European Journal of Clinical Pharmacology. 65 (2): 121–39. doi:10.1007/s00228-008-0570-y. PMID   18958460. S2CID   9977741.
  12. Fujita K, Ando Y, Yamamoto W, Miya T, Endo H, Sunakawa Y, Araki K, Kodama K, Nagashima F, Ichikawa W, Narabayashi M, Akiyama Y, Kawara K, Shiomi M, Ogata H, Iwasa H, Okazaki Y, Hirose T, Sasaki Y (January 2010). "Association of UGT2B7 and ABCB1 genotypes with morphine-induced adverse drug reactions in Japanese patients with cancer". Cancer Chemotherapy and Pharmacology. 65 (2): 251–8. doi:10.1007/s00280-009-1029-2. PMID   19466410. S2CID   2712957.
  13. Abildskov K, Weldy P, Garland M (April 2010). "Molecular cloning of the baboon UDP-glucuronosyltransferase 2B gene family and their activity in conjugating morphine". Drug Metabolism and Disposition. 38 (4): 545–53. doi:10.1124/dmd.109.030635. PMC   2845934 . PMID   20071451.
  14. Pergolizzi JV, Raffa RB, Gould E (September 2009). "Considerations on the use of oxymorphone in geriatric patients". Expert Opinion on Drug Safety. 8 (5): 603–13. doi:10.1517/14740330903153854. PMID   19614559. S2CID   12446624.
  15. Rouguieg K, Picard N, Sauvage FL, Gaulier JM, Marquet P (January 2010). "Contribution of the different UDP-glucuronosyltransferase (UGT) isoforms to buprenorphine and norbuprenorphine metabolism and relationship with the main UGT polymorphisms in a bank of human liver microsomes". Drug Metabolism and Disposition. 38 (1): 40–5. doi:10.1124/dmd.109.029546. PMID   19841060. S2CID   17826299.
  16. Lampe JN (2017). "Advances in the Understanding of Protein-Protein Interactions in Drug Metabolizing Enzymes through the Use of Biophysical Techniques". Frontiers in Pharmacology. 8: 521. doi: 10.3389/fphar.2017.00521 . PMC   5550701 . PMID   28848438.
  17. Miley MJ, Zielinska AK, Keenan JE, Bratton SM, Radominska-Pandya A, Redinbo MR (June 2007). "Crystal structure of the cofactor-binding domain of the human phase II drug-metabolism enzyme UDP-glucuronosyltransferase 2B7". Journal of Molecular Biology. 369 (2): 498–511. doi:10.1016/j.jmb.2007.03.066. PMC   1976284 . PMID   17442341.
  18. Yuan L, Qian S, Xiao Y, Sun H, Zeng S (May 2015). "Homo- and hetero-dimerization of human UDP-glucuronosyltransferase 2B7 (UGT2B7) wild type and its allelic variants affect zidovudine glucuronidation activity". Biochemical Pharmacology. 95 (1): 58–70. doi:10.1016/j.bcp.2015.03.002. PMID   25770680.
  19. 1 2 Yuan LM, Gao ZZ, Sun HY, Qian SN, Xiao YS, Sun LL, Zeng S (November 2016). "Inter-isoform Hetero-dimerization of Human UDP-Glucuronosyltransferases (UGTs) 1A1, 1A9, and 2B7 and Impacts on Glucuronidation Activity". Scientific Reports. 6: 34450. Bibcode:2016NatSR...634450Y. doi:10.1038/srep34450. PMC   5114717 . PMID   27857056.
  20. Lin GF, Guo WC, Chen JG, Qin YQ, Golka K, Xiang CQ, Ma QW, Lu DR, Shen JH (May 2005). "An association of UDP-glucuronosyltransferase 2B7 C802T (His268Tyr) polymorphism with bladder cancer in benzidine-exposed workers in China". Toxicological Sciences. 85 (1): 502–6. doi: 10.1093/toxsci/kfi068 . PMID   15615884.
  21. Falkowski S, Woillard JB, Postil D, Tubiana-Mathieu N, Terrebonne E, Pariente A, Smith D, Guimbaud R, Thalamas C, Rouguieg-Malki K, Marquet P, Picard N (December 2017). "Common variants in glucuronidation enzymes and membrane transporters as potential risk factors for colorectal cancer: a case control study". BMC Cancer. 17 (1): 901. doi:10.1186/s12885-017-3728-0. PMC   5745594 . PMID   29282011.
  22. Endo-Tsukude C, Sasaki JI, Saeki S, Iwamoto N, Inaba M, Ushijima S, Kishi H, Fujii S, Semba H, Kashiwabara K, Tsubata Y, Hayashi M, Kai Y, Saito H, Isobe T, Kohrogi H, Hamada A (2018-01-01). "Population Pharmacokinetics and Adverse Events of Erlotinib in Japanese Patients with Non-small-cell Lung Cancer: Impact of Genetic Polymorphisms in Metabolizing Enzymes and Transporters". Biological & Pharmaceutical Bulletin. 41 (1): 47–56. doi: 10.1248/bpb.b17-00521 . PMID   29311482.
  23. Lazarska KE, Dekker SJ, Vermeulen NP, Commandeur JN (March 2018). "Effect of UGT2B7*2 and CYP2C8*4 polymorphisms on diclofenac metabolism". Toxicology Letters. 284: 70–78. doi: 10.1016/j.toxlet.2017.11.038 . PMID   29203276.
  24. Chen G, Wu SQ, Feng M, Wang Y, Wu JC, Ji GY, Zhang MM, Liu QQ, He JQ (December 2017). "Association of UGT2B7 polymorphisms with risk of induced liver injury by anti-tuberculosis drugs in Chinese Han". International Journal of Immunopathology and Pharmacology. 30 (4): 434–438. doi:10.1177/0394632017733638. PMC   5806809 . PMID   28934901.
  25. Sastre JA, Varela G, López M, Muriel C, González-Sarmiento R (January 2015). "Influence of uridine diphosphate-glucuronyltransferase 2B7 (UGT2B7) variants on postoperative buprenorphine analgesia". Pain Practice. 15 (1): 22–30. doi:10.1111/papr.12152. PMID   24256307. S2CID   33996517.
  26. Sun YX, Zhuo WY, Lin H, Peng ZK, Wang HM, Huang HW, Luo YH, Tang FQ (August 2015). "The influence of UGT2B7 genotype on valproic acid pharmacokinetics in Chinese epilepsy patients". Epilepsy Research. 114: 78–80. doi:10.1016/j.eplepsyres.2015.04.015. PMID   26088889. S2CID   39744204.
  27. Lampe JW, Bigler J, Bush AC, Potter JD (March 2000). "Prevalence of polymorphisms in the human UDP-glucuronosyltransferase 2B family: UGT2B4(D458E), UGT2B7(H268Y), and UGT2B15(D85Y)". Cancer Epidemiology, Biomarkers & Prevention. 9 (3): 329–33. PMID   10750673.

Further reading