Wild type

Last updated
Unlike culinary bananas, wild-type bananas have numerous large, hard seeds. Inside a wild-type banana.jpg
Unlike culinary bananas, wild-type bananas have numerous large, hard seeds.

The wild type (WT) is the phenotype of the typical form of a species as it occurs in nature. Originally, the wild type was conceptualized as a product of the standard [1] "normal" allele at a locus, in contrast to that produced by a non-standard, "mutant" allele. "Mutant" alleles can vary to a great extent, and even become the wild type if a genetic shift occurs within the population. Continued advancements in genetic mapping technologies have created a better understanding of how mutations occur and interact with other genes to alter phenotype. [2] It is now appreciated that most or all gene loci exist in a variety of allelic forms, which vary in frequency throughout the geographic range of a species, and that a uniform wild type does not exist. In general, however, the most prevalent allele – i.e., the one with the highest gene frequency – is the one deemed wild type. [3]

Contents

The concept of wild type is useful in some experimental organisms such as fruit flies Drosophila melanogaster , in which the standard phenotypes for features such as eye color or wing shape are known to be altered by particular mutations that produce distinctive phenotypes, such as "white eyes" or "vestigial wings". Wild-type alleles are indicated with a "+" superscript, for example w+ and vg+ for red eyes and full-size wings, respectively. Manipulation of the genes behind these traits led to the current understanding of how organisms form and how traits mutate within a population. Research involving the manipulation of wild-type alleles has application in many fields, including fighting disease and commercial food production.

Medical applications

The genetic sequence for wild-type versus "mutant" phenotypes and how these genes interact in expression is the subject of much research. Better understanding of these processes is hoped to bring about methods for preventing and curing diseases that are currently incurable such as infection with the herpes virus. [4] One example of such promising research in these fields was the study done examining the link between wild-type mutations and certain types of lung cancer. [5] Research is also being done dealing with the manipulation of certain wild-type traits in viruses to develop new vaccines. [6] This research may lead to new ways to combat deadly viruses such as the Ebola virus [7] and HIV. [8] Research using wild-type mutations is also being done to establish how viruses transition between species to identify harmful viruses with the potential to infect humans. [9]

Commercial applications

Selective breeding to enhance the most beneficial traits is the structure upon which agriculture is built, this expedited the evolution process to make crop plants and animals larger and more disease resistant. Genetic manipulation went further. [10] [11] Genetic alteration of plants leads to not only larger crop production, but also more nutritious products, allowing isolated populations to receive vital vitamins and minerals that would otherwise be unavailable to them. Utilization of these wild-type mutations has also led to plants capable of growing in extremely arid environments, making more of the planet habitable than ever before. [12] As more is understood about these genes, agriculture will continue to become a more efficient process, which will be relied upon to sustain a continually growing population. Amplification of advantageous genes allows the best traits in a population to be present at much higher percentages than normal, although this practice has been the subject of some ethical debate. These changes have also been the reason behind certain plants and animals being almost unrecognizable when compared to their ancestral lines.[ citation needed ]

See also

Related Research Articles

An allele is a variation of the same sequence of nucleotides at the same place on a long DNA molecule, as described in leading textbooks on genetics and evolution. The word is a short form of "allelomorph".

<span class="mw-page-title-main">Mutation</span> Alteration in the nucleotide sequence of a genome

In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, mitosis, or meiosis or other types of damage to DNA, which then may undergo error-prone repair, cause an error during other forms of repair, or cause an error during replication. Mutations may also result from insertion or deletion of segments of DNA due to mobile genetic elements.

<span class="mw-page-title-main">Dominance (genetics)</span> One gene variant masking the effect of another in the other copy of the gene

In genetics, dominance is the phenomenon of one variant (allele) of a gene on a chromosome masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome. The first variant is termed dominant and the second is called recessive. This state of having two different variants of the same gene on each chromosome is originally caused by a mutation in one of the genes, either new or inherited. The terms autosomal dominant or autosomal recessive are used to describe gene variants on non-sex chromosomes (autosomes) and their associated traits, while those on sex chromosomes (allosomes) are termed X-linked dominant, X-linked recessive or Y-linked; these have an inheritance and presentation pattern that depends on the sex of both the parent and the child. Since there is only one copy of the Y chromosome, Y-linked traits cannot be dominant or recessive. Additionally, there are other forms of dominance, such as incomplete dominance, in which a gene variant has a partial effect compared to when it is present on both chromosomes, and co-dominance, in which different variants on each chromosome both show their associated traits.

A genetic screen or mutagenesis screen is an experimental technique used to identify and select individuals who possess a phenotype of interest in a mutagenized population. Hence a genetic screen is a type of phenotypic screen. Genetic screens can provide important information on gene function as well as the molecular events that underlie a biological process or pathway. While genome projects have identified an extensive inventory of genes in many different organisms, genetic screens can provide valuable insight as to how those genes function.

<span class="mw-page-title-main">Genetic diversity</span> Total number of genetic characteristics in a species

Genetic diversity is the total number of genetic characteristics in the genetic makeup of a species, it ranges widely from the number of species to differences within species and can be attributed to the span of survival for a species. It is distinguished from genetic variability, which describes the tendency of genetic characteristics to vary.

<span class="mw-page-title-main">Single-nucleotide polymorphism</span> Single nucleotide in genomic DNA at which different sequence alternatives exist

In genetics and bioinformatics, a single-nucleotide polymorphism is a germline substitution of a single nucleotide at a specific position in the genome that is present in a sufficiently large fraction of considered population.

A heterozygote advantage describes the case in which the heterozygous genotype has a higher relative fitness than either the homozygous dominant or homozygous recessive genotype. Loci exhibiting heterozygote advantage are a small minority of loci. The specific case of heterozygote advantage due to a single locus is known as overdominance. Overdominance is a rare condition in genetics where the phenotype of the heterozygote lies outside of the phenotypical range of both homozygote parents, and heterozygous individuals have a higher fitness than homozygous individuals.

Forward genetics is a molecular genetics approach of determining the genetic basis responsible for a phenotype. Forward genetics provides an unbiased approach because it relies heavily on identifying the genes or genetic factors that cause a particular phenotype or trait of interest.

<span class="mw-page-title-main">Non-Mendelian inheritance</span> Type of pattern of inheritance

Non-Mendelian inheritance is any pattern in which traits do not segregate in accordance with Mendel's laws. These laws describe the inheritance of traits linked to single genes on chromosomes in the nucleus. In Mendelian inheritance, each parent contributes one of two possible alleles for a trait. If the genotypes of both parents in a genetic cross are known, Mendel's laws can be used to determine the distribution of phenotypes expected for the population of offspring. There are several situations in which the proportions of phenotypes observed in the progeny do not match the predicted values.

<span class="mw-page-title-main">Pleiotropy</span> Influence of a single gene on multiple phenotypic traits

Pleiotropy occurs when one gene influences two or more seemingly unrelated phenotypic traits. Such a gene that exhibits multiple phenotypic expression is called a pleiotropic gene. Mutation in a pleiotropic gene may have an effect on several traits simultaneously, due to the gene coding for a product used by a myriad of cells or different targets that have the same signaling function.

<span class="mw-page-title-main">CCR5</span> Immune system protein

C-C chemokine receptor type 5, also known as CCR5 or CD195, is a protein on the surface of white blood cells that is involved in the immune system as it acts as a receptor for chemokines.

Complementation refers to a genetic process when two strains of an organism with different homozygous recessive mutations that produce the same mutant phenotype have offspring that express the wild-type phenotype when mated or crossed. Complementation will ordinarily occur if the mutations are in different genes. Complementation may also occur if the two mutations are at different sites within the same gene, but this effect is usually weaker than that of intergenic complementation. In the case where the mutations are in different genes, each strain's genome supplies the wild-type allele to "complement" the mutated allele of the other strain's genome. Since the mutations are recessive, the offspring will display the wild-type phenotype. A complementation test can be used to test whether the mutations in two strains are in different genes. Complementation is usually weaker or absent if the mutations are in the same gene. The convenience and essence of this test is that the mutations that produce a phenotype can be assigned to different genes without the exact knowledge of what the gene product is doing on a molecular level. The complementation test was developed by American geneticist Edward B. Lewis.

A null allele is a nonfunctional allele caused by a genetic mutation. Such mutations can cause a complete lack of production of the associated gene product or a product that does not function properly; in either case, the allele may be considered nonfunctional. A null allele cannot be distinguished from deletion of the entire locus solely from phenotypic observation.

The term transheterozygote is used in modern genetics periodicals in two different ways. In the first, the transheterozygote has one mutant (-) and one wildtype allele (+) at each of two different genes. In the second, the transheterozygote carries two different mutated alleles of the same gene. This second definition also applies to the term "heteroallelic combination".

Lethal alleles are alleles that cause the death of the organism that carries them. They are usually a result of mutations in genes that are essential for growth or development. Lethal alleles may be recessive, dominant, or conditional depending on the gene or genes involved.

<span class="mw-page-title-main">NPC1</span> Protein-coding gene in the species Homo sapiens

Niemann-Pick disease, type C1 (NPC1) is a membrane protein that mediates intracellular cholesterol trafficking in mammals. In humans the protein is encoded by the NPC1 gene.

Host–parasite coevolution is a special case of coevolution, where a host and a parasite continually adapt to each other. This can create an evolutionary arms race between them. A more benign possibility is of an evolutionary trade-off between transmission and virulence in the parasite, as if it kills its host too quickly, the parasite will not be able to reproduce either. Another theory, the Red Queen hypothesis, proposes that since both host and parasite have to keep on evolving to keep up with each other, and since sexual reproduction continually creates new combinations of genes, parasitism favours sexual reproduction in the host.

<span class="mw-page-title-main">Reverse genetics</span> Method in molecular genetics

Reverse genetics is a method in molecular genetics that is used to help understand the function(s) of a gene by analysing the phenotypic effects caused by genetically engineering specific nucleic acid sequences within the gene. The process proceeds in the opposite direction to forward genetic screens of classical genetics. While forward genetics seeks to find the genetic basis of a phenotype or trait, reverse genetics seeks to find what phenotypes are controlled by particular genetic sequences.

A human disease modifier gene is a modifier gene that alters expression of a human gene at another locus that in turn causes a genetic disease. Whereas medical genetics has tended to distinguish between monogenic traits, governed by simple, Mendelian inheritance, and quantitative traits, with cumulative, multifactorial causes, increasing evidence suggests that human diseases exist on a continuous spectrum between the two.

<span class="mw-page-title-main">Epistasis</span> Dependence of a gene mutations phenotype on mutations in other genes

Epistasis is a phenomenon in genetics in which the effect of a gene mutation is dependent on the presence or absence of mutations in one or more other genes, respectively termed modifier genes. In other words, the effect of the mutation is dependent on the genetic background in which it appears. Epistatic mutations therefore have different effects on their own than when they occur together. Originally, the term epistasis specifically meant that the effect of a gene variant is masked by that of a different gene.

References

  1. "Wild Type vs. Mutant Traits". Miami College of Arts and Sciences. Retrieved March 2, 2016.
  2. Chari, Sudarshan; Dworkin, Ian (2013). "The Conditional Nature of Genetic Interactions: The Consequences of Wild-Type Backgrounds on Mutational Interactions in a Genome-Wide Modifier Screen". PLOS Genetics. 9 (8): e1003661. doi: 10.1371/journal.pgen.1003661 . PMC   3731224 . PMID   23935530.
  3. Jones, Elizabeth; Hartl, Daniel L. (1998). Genetics: principles and analysis . Boston: Jones and Bartlett Publishers. ISBN   978-0-7637-0489-6.
  4. Batista, Franco, Vicentini, Spilki, Silva,Adania, Roehe (2005). "Neutralizing Antibodies against Feline Herpesvirus Type 1 in Captive Wild Felids of Brazil". Journal of Zoo and Wildlife Medicine. 36 (3): 447–450. doi:10.1638/04-060.1. PMID   17312763. S2CID   42233414.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. Zhao, Zhang, Yan, Yang, Wu (July 2014). "Efficacy of epidermal growth factor receptor inhibitors versus chemotherapy as second-line treatment in advanced non-small-cell lung cancer with wild-type EGFR: A meta-analysis of randomized controlled clinical trials". Lung Cancer. 85 (1): 66–73. doi:10.1016/j.lungcan.2014.03.026. PMID   24780111.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. Sanchez, Anthony. "Analysis of Filovirus Entry into Vero E6 Cells, Using Inhibitors of Endocytosis, Endosomal Acidification, Structural Integrity, and Cathepsin (B and L) Activity". oxfordjournals.org. The Journal of Infectious Diseases. Retrieved 2014-11-16.
  7. Sullivan, Nancy; Yang, Zhi-Yong; Nabel, Gary (2003). "Ebola Virus Pathogenesis: Implications for Vaccines and Therapies". Journal of Virology. 77 (18): 9733–9737. doi:10.1128/JVI.77.18.9733-9737.2003. PMC   224575 . PMID   12941881.
  8. Quan, Yudong; Xu, Hongtao; Kramer, Vintor; Han, Yingshan; Sloan, Richard; Wainberg, Mark (2014). "Identification of an env-defective HIV-1 mutant capable of spontaneous reversion to a wild-type phenotype in certain T-cell lines". Virology Journal. 11: 177. doi: 10.1186/1743-422X-11-177 . PMC   4283149 . PMID   25287969.
  9. Bieringer, Maria; Han, Jung; Kendl, Sabine; Khosravi, Mojtaba; Plattet, Philippe; Schneider-Schaulies, Jürgen (2013). "Experimental Adaptation of Wild-Type Canine Distemper Virus (CDV) to the Human Entry Receptor CD150". PLOS ONE. 8 (3): e57488. Bibcode:2013PLoSO...857488B. doi: 10.1371/journal.pone.0057488 . PMC   3595274 . PMID   23554862.
  10. Davidson, Nagar, Ribshtein, Shkoda, Perk, Garcia (2009). "Detection of Wild- and Vaccine-Type Avian Infectious Laryngotracheitis Virus in Clinical Samples and Feather Shafts of Commercial Chickens Full Access". Avian Diseases. 58 (2): 618–623. doi:10.1637/8668-022709-ResNote.1. PMID   20095166. S2CID   1399313.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. The Humane Society of America. "An HSUS Report: Welfare Issues with Selective Breeding of Egg-Laying Hens for Productivity" (PDF).{{cite journal}}: Cite journal requires |journal= (help)
  12. Mahmood, Khalid; Kannangara, Rubini; Jørgensen, Kirsten; Fuglsang, Anja (2014). "Analysis of peptide PSY1 responding transcripts in the two Arabidopsis plant lines: wild type and psy1r receptor mutant". BMC Genomics. 15 (1): 441. doi: 10.1186/1471-2164-15-441 . PMC   4070568 . PMID   24906416.