Lactose synthase

Last updated
Lactose synthase
1o23.jpg
Lactose synthase monomer, Bos taurus + alpha-lactalbumin (mouse)
Identifiers
EC no. 2.4.1.22
CAS no. 2604493
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

Lactose synthase is an enzyme that generates lactose from glucose and UDP-galactose.

It is classified under EC 2.4.1.22.

It consists of N-acetyllactosamine synthase and alpha-lactalbumin. Alpha-lactalbumin, which is expressed in response to prolactin, increases the affinity of N-acetyllactosamine synthase for its substrate, causing increased production of lactose during lactation.

N-acetyllactosamine synthase falls under the category of beta-1,4-galactosyltransferase, a type-II membrane protein found in the Golgi. [1] [2] Alpha-lactalbumin is a Ca2+ binding protein specific to mammary glands. Beta-1,4-galactosyltransferase consists of the catalytic component and alpha-lactalbumin consists of the regulatory component of lactose synthase. [1] Alpha-lactalbumin promotes glucose binding to beta-1,4-galactosyltransferase. [1] [2] The beta-1,4-galactosyltransferase catalytic component consists of two flexible loops: small loop and large loop. The small loop consists of a Trp residue (Trp314) with surrounding glycine residues, meanwhile the large loop makes up amino acid residues 345 to 365. The Trp residue in the small loop moves allowing for the sugar nucleotide to be locked into the binding site. This causes a conformational change in the large loop which then creates sites for oligosaccharide and metal ion binding, and protein-protein interactions for alpha-lactalbumin. [3]

Related Research Articles

β-Galactosidase Family of glycoside hydrolase enzymes

β-Galactosidase, is a glycoside hydrolase enzyme that catalyzes hydrolysis of terminal non-reducing β-D-galactose residues in β-D-galactosides.

<span class="mw-page-title-main">Tryptophan synthase</span>

Tryptophan synthase or tryptophan synthetase is an enzyme that catalyses the final two steps in the biosynthesis of tryptophan. It is commonly found in Eubacteria, Archaebacteria, Protista, Fungi, and Plantae. However, it is absent from Animalia. It is typically found as an α2β2 tetramer. The α subunits catalyze the reversible formation of indole and glyceraldehyde-3-phosphate (G3P) from indole-3-glycerol phosphate (IGP). The β subunits catalyze the irreversible condensation of indole and serine to form tryptophan in a pyridoxal phosphate (PLP) dependent reaction. Each α active site is connected to a β active site by a 25 angstrom long hydrophobic channel contained within the enzyme. This facilitates the diffusion of indole formed at α active sites directly to β active sites in a process known as substrate channeling. The active sites of tryptophan synthase are allosterically coupled.

<span class="mw-page-title-main">Malate dehydrogenase</span> Class of enzymes

Malate dehydrogenase (EC 1.1.1.37) (MDH) is an enzyme that reversibly catalyzes the oxidation of malate to oxaloacetate using the reduction of NAD+ to NADH. This reaction is part of many metabolic pathways, including the citric acid cycle. Other malate dehydrogenases, which have other EC numbers and catalyze other reactions oxidizing malate, have qualified names like malate dehydrogenase (NADP+).

<span class="mw-page-title-main">Glycogen phosphorylase</span> Class of enzymes

Glycogen phosphorylase is one of the phosphorylase enzymes. Glycogen phosphorylase catalyzes the rate-limiting step in glycogenolysis in animals by releasing glucose-1-phosphate from the terminal alpha-1,4-glycosidic bond. Glycogen phosphorylase is also studied as a model protein regulated by both reversible phosphorylation and allosteric effects.

<span class="mw-page-title-main">Glycogenin</span> Enzyme involved in converting glucose to glycogen

Glycogenin is an enzyme involved in converting glucose to glycogen. It acts as a primer, by polymerizing the first few glucose molecules, after which other enzymes take over. It is a homodimer of 37-kDa subunits and is classified as a glycosyltransferase.

<span class="mw-page-title-main">TIM barrel</span> Protein fold

The TIM barrel, also known as an alpha/beta barrel, is a conserved protein fold consisting of eight alpha helices (α-helices) and eight parallel beta strands (β-strands) that alternate along the peptide backbone. The structure is named after triose-phosphate isomerase, a conserved metabolic enzyme. TIM barrels are ubiquitous, with approximately 10% of all enzymes adopting this fold. Further, five of seven enzyme commission (EC) enzyme classes include TIM barrel proteins. The TIM barrel fold is evolutionarily ancient, with many of its members possessing little similarity today, instead falling within the twilight zone of sequence similarity.

<span class="mw-page-title-main">Alpha-lactalbumin</span> Protein-coding gene in the species Homo sapiens

α-Lactalbumin, also known as LALBA, is a protein that in humans is encoded by the LALBA gene.

<span class="mw-page-title-main">Phosphorylase kinase</span>

Phosphorylase kinase (PhK) is a serine/threonine-specific protein kinase which activates glycogen phosphorylase to release glucose-1-phosphate from glycogen. PhK phosphorylates glycogen phosphorylase at two serine residues, triggering a conformational shift which favors the more active glycogen phosphorylase “a” form over the less active glycogen phosphorylase b.

N-acetyllactosamine synthase is a galactosyltransferase enzyme. It is a component of lactose synthase This enzyme modifies the connection between two molecule UDP-galactose and N-actyl-D-glucosamine and generates two different molecules UDP and N-acetyllactosamine as products. The main function of the enzyme is associated with the biosynthesis of glycoproteins and glycolipids in both human and animals. In human, the activity of this enzyme can be found in Golgi apparatus.

In enzymology, a cellobiose dehydrogenase (acceptor) (EC 1.1.99.18) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Chorismate synthase</span>

The enzyme chorismate synthase catalyzes the chemical reaction

<span class="mw-page-title-main">Cellulose synthase (UDP-forming)</span> Cellulose synthesizing enzyme in plants and bacteria

The UDP-forming form of cellulose synthase is the main enzyme that produces cellulose. Systematically, it is known as UDP-glucose:(1→4)-β-D-glucan 4-β-D-glucosyltransferase in enzymology. It catalyzes the chemical reaction:

<span class="mw-page-title-main">Sucrose-phosphate synthase</span>

Sucrose-phosphate synthase (SPS) is a plant enzyme involved in sucrose biosynthesis. Specifically, this enzyme catalyzes the transfer of a hexosyl group from uridine diphosphate glucose (UDP-glucose) to D-fructose 6-phosphate to form UDP and D-sucrose-6-phosphate. This reversible step acts as the key regulatory control point in sucrose biosynthesis, and is an excellent example of various key enzyme regulation strategies such as allosteric control and reversible phosphorylation.

In enzymology, a nucleoside-phosphate kinase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">B4GALT1</span> Protein-coding gene in the species Homo sapiens

Beta-1,4-galactosyltransferase 1 is an enzyme that in humans is encoded by the B4GALT1 gene.

<span class="mw-page-title-main">Lactose permease</span>

Lactose permease is a membrane protein which is a member of the major facilitator superfamily. Lactose permease can be classified as a symporter, which uses the proton gradient towards the cell to transport β-galactosides such as lactose in the same direction into the cell.

The Walker A and Walker B motifs are protein sequence motifs, known to have highly conserved three-dimensional structures. These were first reported in ATP-binding proteins by Walker and co-workers in 1982.

<span class="mw-page-title-main">Glycoside hydrolase family 22</span> Family of glycoside hydrolases

In molecular biology, glycoside hydrolase family 22 is a family of glycoside hydrolases.

<span class="mw-page-title-main">Nest (protein structural motif)</span>

The Nest is a type of protein structural motif. It is a small recurring anion-binding feature of both proteins and peptides. Each consists of the main chain atoms of three consecutive amino acid residues. The main chain NH groups bind the anions while the side chain atoms are often not involved. Proline residues lack NH groups so are rare in nests. About one in 12 of amino acid residues in proteins, on average, belongs to a nest.

In molecular biology, an arginine finger is an amino acid residue of some enzymes. Arginine fingers are often found in the protein superfamily of AAA+ ATPases, GTPases, and dUTPases, where they assist in the catalysis of the gamma phosphate or gamma and beta phosphates from ATP or GTP, which creates a release of energy which can be used to perform cellular work. They are also found in GTPase-activating proteins (GAP). Thus, they are essential for many forms of life, and are highly conserved. Arginine fingers function through non-covalent interactions. They may also assist in dimerization, and while they are found in a wide variety of enzymes, they are not ubiquitous.

References

  1. 1 2 3 Ramakrishnan B, Qasba PK (June 2001). "Crystal structure of lactose synthase reveals a large conformational change in its catalytic component, the beta1,4-galactosyltransferase-I". Journal of Molecular Biology. 310 (1): 205–18. doi:10.1006/jmbi.2001.4757. PMID   11419947.
  2. 1 2 Amado, M.; Almeida, R.; Schwientek, T.; Clausen, H. (1999-12-06). "Identification and characterization of large galactosyltransferase gene families: galactosyltransferases for all functions". Biochimica et Biophysica Acta (BBA) - General Subjects. 1473 (1): 35–53. doi:10.1016/s0304-4165(99)00168-3. ISSN   0006-3002. PMID   10580128.
  3. Ramakrishnan, Boopathy; Boeggeman, Elizabeth; Qasba, Pradman K. (2002-03-15). "Beta-1,4-galactosyltransferase and lactose synthase: molecular mechanical devices". Biochemical and Biophysical Research Communications. 291 (5): 1113–1118. doi:10.1006/bbrc.2002.6506. ISSN   0006-291X. PMID   11883930.