Hepatic fructokinase

Last updated
ketohexokinase (fructokinase)
6ul7.jpg
Ketohexokinase homodimer, Human
Identifiers
SymbolKHK
NCBI gene 3795
HGNC 6315
OMIM 229800
RefSeq NM_006488
UniProt P50053
Other data
EC number 2.7.1.3
Locus Chr. 2 p23.3-23.2
Search for
Structures Swiss-model
Domains InterPro
Ketohexokinase
Identifiers
EC no. 2.7.1.3
CAS no. 9030-50-6
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

Hepatic fructokinase (or ketohexokinase) is an enzyme that catalyzes the phosphorylation of fructose to produce fructose-1-phosphate.

Contents

ATP + Beta-D-Fructofuranose.svg   ADP + Beta-D-Fructose-1-phosphat.svg
ATP + D-fructose → ADP + D-fructose-1-phosphate [1]

Isoforms

In humans, ketohexokinase is encoded by the KHK gene, which produces two isoforms, KHK-A and KHK-C, through alternative splicing.

Pathology

A deficiency is associated with essential fructosuria.

Physiological Significance

The "Fructose Survival Hypothesis" proposes that ketohexokinase activity plays a central role in energy storage and survival during periods of food scarcity. According to this model, the rapid phosphorylation of fructose by KHK-C causes a transient depletion of hepatocellular ATP and the generation of uric acid. This metabolic stress signal is hypothesized to shift metabolism towards mitochondrial oxidative stress and fat accumulation. While this mechanism potentially aids survival in resource-poor environments, researchers suggest it contributes to metabolic syndrome and insulin resistance in modern dietary contexts. [3] [4]

Inhibitors

Several natural and synthetic compounds have been studied as inhibitors of ketohexokinase (KHK) to modulate fructose metabolism.

References

  1. Bais R, James HM, Rofe AM, Conyers RA (1985). "The purification and properties of human liver ketohexokinase. A role for ketohexokinase and fructose-bisphosphate aldolase in the metabolic production of oxalate from xylitol". Biochem. J. 230 (1): 53–60. doi:10.1042/bj2300053. PMC   1152585 . PMID   2996495.
  2. Diggle CP, Shires M, Leitch D, Brooke D, Carr IM, Markham AF, Hayward BE, Asipu A, Bonthron DT (2009). "Ketohexokinase: Expression and Localization of the Principal Fructose-metabolizing Enzyme". Journal of Histochemistry & Cytochemistry. 57 (8): 763–774. doi:10.1369/jhc.2009.953190. PMC   2713076 . PMID   19365088.
  3. Johnson RJ, Lanaspa MA, Sanchez-Lozada LG, Tolan D, Nakagawa T, Ishimoto T, Andres-Hernando A, Rodriguez-Iturbe B, Stenvinkel P (2023). "The fructose survival hypothesis for obesity". Philosophical Transactions of the Royal Society B: Biological Sciences. 378 (1885) 20220230. doi:10.1098/rstb.2022.0230. PMC   10363162 . PMID   37482773.
  4. Johnson RJ, Stenvinkel P, Andrews P, et al. (2020). "Fructose metabolism as a common evolutionary pathway of survival associated with climate change, food shortage and droughts". Journal of Internal Medicine. 287 (3): 252–262. doi:10.1111/joim.12993. PMC   10917390 . PMID   31621967.
  5. Andres-Hernando A, Li N, Cicerchi C, et al. (2017). "Protective role of fructokinase blockade in the pathogenesis of acute kidney injury in mice". Nature Communications. 8 14181. Bibcode:2017NatCo...814181A. doi:10.1038/ncomms14181. PMC   5316807 . PMID   28194018.
  6. Le MT, Lanaspa MA, Cicerchi CM, et al. (2016). "Bioactivity-Guided Identification of Botanical Inhibitors of Ketohexokinase". PLOS ONE. 11 (6) e0157458. Bibcode:2016PLoSO..1157458L. doi: 10.1371/journal.pone.0157458 . PMC   4913896 . PMID   27322374.