PrimPol

Last updated
PRIMPOL
Identifiers
Aliases PRIMPOL , CCDC111, MYP22, primase and DNA directed polymerase, Primpol1, PrimPol
External IDs OMIM: 615421 MGI: 3603756 HomoloGene: 14065 GeneCards: PRIMPOL
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001001184

RefSeq (protein)

NP_001001184

Location (UCSC) Chr 4: 184.65 – 184.69 Mb Chr 8: 46.58 – 46.62 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

PrimPol is a protein encoded by the PRIMPOL gene in humans. [5] [6] [7] PrimPol is a eukaryotic protein with both DNA polymerase and DNA Primase activities involved in translesion DNA synthesis. It is the first eukaryotic protein to be identified with priming activity using deoxyribonucleotides. [6] [7] It is also the first protein identified in the mitochondria to have translesion DNA synthesis activities.

Etymology

PrimPol was identified in a bioinformatic study and initially presumed to only have primase activity. [8] Subsequent in vitro and in vivo studies have shown it to have both primase and polymerase activities that both localise to the catalytic domain of PrimPol. [6] [7] [9] For that reason, this protein was assigned the name PrimPol.

Function

PrimPol is a DNA primase and DNA polymerase involved in DNA replication. Unlike the other known DNA polymerases, PrimPol can initiate replication without the need of an RNA primer and can extend from primers produced by PrimPol. [6] [7] PrimPol preferentially initiates replication using deoxynucleotides, rather than ribonucleotides and will only extend from a nascent DNA chain using deoxynucleotides. PrimPol exhibits a 1000-fold bias towards Watson-Crick base pairing when extending DNA chains. PrimPol plays an as yet unidentified role in unperturbed replication, PrimPol depleted cells slow replication fork progression, proliferate slower and show an increased RPA foci. [6] [7]

Translesion DNA Synthesis

PrimPol is predicted to play a role in translesion DNA synthesis. When the replication fork reaches a site of DNA damage it stalls, which can lead to lethal single stranded gaps and double strand breaks. PrimPol is one of a number of polymerases that can be recruited to replicate past sites of DNA damage. PrimPol localises to chromatin following UV irradiation. [6] PrimPol is able to bypass the highly distortive Pyrimidine dimers produced as a result of UV irradiation of DNA in vitro. [6] [7] PrimPol requires its primase activity to bypass UV lesions in vivo without stalling. [9] [10] Taken together these data suggest that PrimPol has two separate modes of action to bypass lesions, one in direct read-through of lesions in a classical translesion DNA synthesis manner and one in priming downstream of the lesion and the gap filled in postreplicatively.

In addition to UV lesions, PrimPol is capable of bypassing the 8-Oxoguanine bases that are produced in response to oxidative stress, this is of particular importance in the oxidative environment of the mitochondria. [7] The replicative DNA polymerase identified in the mitochondria, pol γ, deals with these lesions poorly. Furthermore, PrimPol is capable of bypassing an AP site in approximately 80% of cases. [7]

Structure

PrimPol is formed of two protein domains, a catalytic primase-polymerase domain and a zinc finger domain. [6] [7] The primase and polymerase catalytic functions of PrimPol localise to the primase-polymerase domain but primase activity of PrimPol requires the zinc finger domain. [9] [10]

Subcellular Localization

PrimPol has been found to be mainly located in the cytosol (47%), with large fractions also found in the mitochondria (34%), and nuclear compartments (19%). [7] The mitochondrial fraction of PrimPol is found to be in the matrix of the mitochondria, as opposed to the either the membrane or intermembrane space.

PrimPol mutations

A mutation in the PRIMPOL gene has been correlated with myopia. [11] [12] This tyrosine to aspartate (Y89D) mutation has been shown to produce a poorly processive variant of the PrimPol protein, and this Y89D variant impedes replication forks in vivo. [12]

Related Research Articles

<span class="mw-page-title-main">DNA replication</span> Biological process

In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. DNA replication occurs in all living organisms acting as the most essential part for biological inheritance. This is essential for cell division during growth and repair of damaged tissues, while it also ensures that each of the new cells receives its own copy of the DNA. The cell possesses the distinctive property of division, which makes replication of DNA essential.

<span class="mw-page-title-main">DNA polymerase</span> Form of DNA replication

A DNA polymerase is a member of a family of enzymes that catalyze the synthesis of DNA molecules from nucleoside triphosphates, the molecular precursors of DNA. These enzymes are essential for DNA replication and usually work in groups to create two identical DNA duplexes from a single original DNA duplex. During this process, DNA polymerase "reads" the existing DNA strands to create two new strands that match the existing ones. These enzymes catalyze the chemical reaction

DNA primase is an enzyme involved in the replication of DNA and is a type of RNA polymerase. Primase catalyzes the synthesis of a short RNA segment called a primer complementary to a ssDNA template. After this elongation, the RNA piece is removed by a 5' to 3' exonuclease and refilled with DNA.

<span class="mw-page-title-main">DNA polymerase I</span> Family of enzymes

DNA polymerase I is an enzyme that participates in the process of prokaryotic DNA replication. Discovered by Arthur Kornberg in 1956, it was the first known DNA polymerase. It was initially characterized in E. coli and is ubiquitous in prokaryotes. In E. coli and many other bacteria, the gene that encodes Pol I is known as polA. The E. coli Pol I enzyme is composed of 928 amino acids, and is an example of a processive enzyme — it can sequentially catalyze multiple polymerisation steps without releasing the single-stranded template. The physiological function of Pol I is mainly to support repair of damaged DNA, but it also contributes to connecting Okazaki fragments by deleting RNA primers and replacing the ribonucleotides with DNA.

<span class="mw-page-title-main">Okazaki fragments</span> Transient components of lagging strand of DNA

Okazaki fragments are short sequences of DNA nucleotides which are synthesized discontinuously and later linked together by the enzyme DNA ligase to create the lagging strand during DNA replication. They were discovered in the 1960s by the Japanese molecular biologists Reiji and Tsuneko Okazaki, along with the help of some of their colleagues.

<span class="mw-page-title-main">DNA repair</span> Cellular mechanism

DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA damage, resulting in tens of thousands of individual molecular lesions per cell per day. Many of these lesions cause structural damage to the DNA molecule and can alter or eliminate the cell's ability to transcribe the gene that the affected DNA encodes. Other lesions induce potentially harmful mutations in the cell's genome, which affect the survival of its daughter cells after it undergoes mitosis. As a consequence, the DNA repair process is constantly active as it responds to damage in the DNA structure. When normal repair processes fail, and when cellular apoptosis does not occur, irreparable DNA damage may occur, including double-strand breaks and DNA crosslinkages. This can eventually lead to malignant tumors, or cancer as per the two hit hypothesis.

<span class="mw-page-title-main">DNA polymerase II</span>

DNA polymerase II is a prokaryotic DNA-Dependent DNA polymerase encoded by the PolB gene.

Postreplication repair is the repair of damage to the DNA that takes place after replication.

<span class="mw-page-title-main">POLI</span> Protein-coding gene in the species Homo sapiens

DNA polymerase iota is an enzyme that in humans is encoded by the POLI gene. It is found in higher eukaryotes, and is believed to have arisen from a gene duplication from Pol η. Pol ι, is a Y family polymerase that is involved in translesion synthesis. It can bypass 6-4 pyrimidine adducts and abasic sites and has a high frequency of wrong base incorporation. Like many other Y family polymerases Pol ι, has low processivity, a large DNA binding pocket and doesn't undergo conformational changes when DNA binds. These attributes are what allow Pol ι to carry out its task as a translesion polymerase. Pol ι only uses Hoogsteen base pairing, during DNA synthesis, it will add adenine opposite to thymine in the syn conformation and can add both cytosine and thymine in the anti conformation across guanine, which it flips to the syn conformation.

<span class="mw-page-title-main">DNA polymerase lambda</span> Protein-coding gene in the species Homo sapiens

DNA polymerase lambda, also known as Pol λ, is an enzyme found in all eukaryotes. In humans, it is encoded by the POLL gene.

<span class="mw-page-title-main">POLD1</span> Protein-coding gene in the species Homo sapiens

The gene polymerase delta 1 (POLD1) encodes the large, POLD1/p125, catalytic subunit of the DNA polymerase delta (Polδ) complex. The Polδ enzyme is responsible for synthesizing the lagging strand of DNA, and has also been implicated in some activities at the leading strand. The POLD1/p125 subunit encodes both DNA polymerizing and exonuclease domains, which provide the protein an important second function in proofreading to ensure replication accuracy during DNA synthesis, and in a number of types of replication-linked DNA repair following DNA damage.

<span class="mw-page-title-main">REV1</span> Protein-coding gene in the species Homo sapiens

DNA repair protein REV1 is a protein that in humans is encoded by the REV1 gene.

<span class="mw-page-title-main">REV3L</span> Protein-coding gene in the species Homo sapiens

Protein reversionless 3-like (REV3L) also known as DNA polymerase zeta catalytic subunit (POLZ) is an enzyme that in humans is encoded by the REV3L gene.

<span class="mw-page-title-main">PRIM2</span> Protein-coding gene in the species Homo sapiens

DNA primase large subunit is an enzyme that in humans is encoded by the PRIM2 gene.

<span class="mw-page-title-main">DNA polymerase eta</span> Protein-coding gene in the species Homo sapiens

DNA polymerase eta, is a protein that in humans is encoded by the POLH gene.

DNA polymerase IV is a prokaryotic polymerase that is involved in mutagenesis and is encoded by the dinB gene. It exhibits no 3′→5′ exonuclease (proofreading) activity and hence is error prone. In E. coli, DNA polymerase IV is involved in non-targeted mutagenesis. Pol IV is a Family Y polymerase expressed by the dinB gene that is switched on via SOS induction caused by stalled polymerases at the replication fork. During SOS induction, Pol IV production is increased tenfold and one of the functions during this time is to interfere with Pol III holoenzyme processivity. This creates a checkpoint, stops replication, and allows time to repair DNA lesions via the appropriate repair pathway. Another function of Pol IV is to perform translesion synthesis at the stalled replication fork like, for example, bypassing N2-deoxyguanine adducts at a faster rate than transversing undamaged DNA. Cells lacking dinB gene have a higher rate of mutagenesis caused by DNA damaging agents.

DNA Polymerase V is a polymerase enzyme involved in DNA repair mechanisms in bacteria, such as Escherichia coli. It is composed of a UmuD' homodimer and a UmuC monomer, forming the UmuD'2C protein complex. It is part of the Y-family of DNA Polymerases, which are capable of performing DNA translesion synthesis (TLS). Translesion polymerases bypass DNA damage lesions during DNA replication - if a lesion is not repaired or bypassed the replication fork can stall and lead to cell death. However, Y polymerases have low sequence fidelity during replication. When the UmuC and UmuD' proteins were initially discovered in E. coli, they were thought to be agents that inhibit faithful DNA replication and caused DNA synthesis to have high mutation rates after exposure to UV-light. The polymerase function of Pol V was not discovered until the late 1990s when UmuC was successfully extracted, consequent experiments unequivocally proved UmuD'2C is a polymerase. This finding lead to the detection of many Pol V orthologs and the discovery of the Y-family of polymerases.

<span class="mw-page-title-main">PRIM1</span> Protein-coding gene in the species Homo sapiens

DNA primase small subunit is an enzyme that in humans is encoded by the PRIM1 gene.

<span class="mw-page-title-main">DNA polymerase alpha catalytic subunit</span> Protein-coding gene in the species Homo sapiens

DNA polymerase alpha catalytic subunit is an enzyme that in humans is encoded by the POLA1 gene.

<span class="mw-page-title-main">DNA polymerase alpha</span> Family of protein complexes

DNA polymerase alpha also known as Pol α is an enzyme complex found in eukaryotes that is involved in initiation of DNA replication. The DNA polymerase alpha complex consists of 4 subunits: POLA1, POLA2, PRIM1, and PRIM2.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000164306 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000038225 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: Entrez Gene: PRIMPOL primase and polymerase (DNA-directed)".
  6. 1 2 3 4 5 6 7 8 Bianchi J, Rudd SJ, Jozwiakowski SK, Bailey LJ, Soura V, Taylor E, Stevanovic I, Green AJ, Stracker TH, Lindsay HD, Doherty AJ (Nov 2014). "PrimPol bypasses UV photoproducts during eukaryotic chromosomal DNA replication". Molecular Cell. 52 (4): 566–73. doi:10.1016/j.molcel.2013.10.035. PMC   4228047 . PMID   24267451.
  7. 1 2 3 4 5 6 7 8 9 10 García-Gómez S, Reyes A, Martínez-Jiménez MI, Chocrón ES, Mourón S, Terrados G, Powell C, Salido E, Méndez J, Holt IJ, Blanco L (Nov 2014). "PrimPol, an archaic primase/polymerase operating in human cells". Molecular Cell. 52 (4): 541–53. doi:10.1016/j.molcel.2013.09.025. PMC   3899013 . PMID   24207056.
  8. Iyer LM, Koonin EV, Leipe DD, Aravind L (Jul 2005). "Origin and evolution of the archaeo-eukaryotic primase superfamily and related palm-domain proteins: structural insights and new members". Nucleic Acids Research. 33 (12): 3875–96. doi:10.1093/nar/gki702. PMC   1176014 . PMID   16027112.
  9. 1 2 3 Keen BA, Jozwiakowski SK, Bailey LJ, Bianchi J, Doherty AJ (Mar 2014). "Molecular dissection of the domain architecture and catalytic activities of human PrimPol". Nucleic Acids Research. 42 (9): 5830–45. doi:10.1093/nar/gku214. PMC   4027207 . PMID   24682820.
  10. 1 2 Mourón S, Rodriguez-Acebes S, Martínez-Jiménez MI, García-Gómez S, Chocrón S, Blanco L, Méndez J (Nov 2013). "Repriming of DNA synthesis at stalled replication forks by human PrimPol". Nature Structural & Molecular Biology. 20 (12): 1383–9. doi:10.1038/nsmb.2719. hdl: 10261/98409 . PMID   24240614. S2CID   28904104.
  11. Zhao F, Wu J, Xue A, Su Y, Wang X, Lu X, Zhou Z, Qu J, Zhou X (Apr 2013). "Exome sequencing reveals CCDC111 mutation associated with high myopia". Human Genetics. 132 (8): 913–21. doi:10.1007/s00439-013-1303-6. PMID   23579484. S2CID   16845466.
  12. 1 2 Keen BA, Bailey LJ, Jozwiakowski SK, Doherty AJ (Sep 2014). "Human PrimPol mutation associated with high myopia has a DNA replication defect". Nucleic Acids Research. 42 (19): 12102–11. doi:10.1093/nar/gku879. PMC   4231748 . PMID   25262353.