DNA polymerase beta

Last updated
POLB
Protein POLB PDB 1bno.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases POLB , DNA polymerase beta
External IDs OMIM: 174760 MGI: 97740 HomoloGene: 2013 GeneCards: POLB
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_002690

NM_011130

RefSeq (protein)

NP_002681

NP_035260

Location (UCSC)n/a Chr 8: 23.12 – 23.14 Mb
PubMed search [2] [3]
Wikidata
View/Edit Human View/Edit Mouse
Stem loopII regulatory element in POLB
RF01455.png
Predicted secondary structure of the stem loopII (M2) regulatory element in POLB
Identifiers
SymbolPOLB
Rfam RF01455
NCBI Gene 5423
HGNC 9174
OMIM 174760
RefSeq NM_002690
Other data
RNA type Cis-reg
Domain(s) Mammalia
Locus Chr. 8 p11.2
PDB structures PDBe

DNA polymerase beta, also known as POLB, is an enzyme present in eukaryotes. In humans, it is encoded by the POLB gene. [4]

Function

In eukaryotic cells, DNA polymerase beta (POLB) performs base excision repair (BER) required for DNA maintenance, replication, recombination, and drug resistance. [4]

The mitochondrial DNA of mammalian cells is constantly under attack from oxygen radicals released during ATP production. Mammalian cell mitochondria contain an efficient base excision repair system employing POLB that removes some frequent oxidative DNA damages. [5] POLB thus has a key role in maintaining the stability of the mitochondrial genome. [5]

An analysis of the fidelity of DNA replication by polymerase beta in the neurons from young and very aged mice indicated that aging has no significant effect on the fidelity of DNA synthesis by polymerase beta. [6] This finding was considered to provide evidence against the error catastrophe theory of aging. [6] [7]

Base excision repair

Cabelof et al. measured the ability to repair DNA damage by the BER pathway in tissues of young (4-month-old) and old (24-month-old) mice. [8] In all tissues examined (brain, liver, spleen and testes) the ability to repair DNA damage declined significantly with age, and the reduction in repair capability correlated with decreased levels of DNA polymerase beta at both the protein and messenger RNA levels. Numerous investigators have reported an accumulation of DNA damage with age, especially in brain and liver. [9] Cabelof et al. [8] suggested that the inability of the BER pathway to repair damages over time may provide a mechanistic explanation for the frequent observations of DNA accumulation of damage with age.

Regulation of expression

DNA polymerase beta maintains genome integrity by participating in base excision repair. Overexpression of POLB mRNA has been correlated with a number of cancer types, whereas deficiencies in POLB results in hypersensitivity to alkylating agents, induced apoptosis, and chromosomal breaking. Therefore, it is essential that POLB expression is tightly regulated. [10] [11] [12] [13]

POLB gene is upregulated by CREB1 transcription factor's binding to the cAMP response element (CRE) present in the promoter of the POLB gene in response to exposure to alkylating agents. [14] [15] POLB gene expression is also regulated at the post transcriptional level as the 3'UTR of the POLB mRNA has been shown to contain three stem-loop structures that influence gene expression. [16] These three-stem loop structures are known as M1, M2, and M3, where M2 and M3 have a key role in gene regulation. M3 contributes to gene expression, as it contains the polyadenylation signal followed by the cleavage and polyadenylation site, thereby contributing to pre-mRNA processing. M2 has been shown to be evolutionary conserved, and, through mutagenesis, it was shown that this stem loop structure acts as a RNA destabilizing element.

In addition to these cis-regulatory elements present within the 3'UTR a trans-acting protein, HAX1 is thought to contribute to the regulation of gene expression. Yeast three-hybrid assays have shown that this protein binds to the stem loops within the 3'UTR of the POLB mRNA, however the exact mechanism in how this protein regulates gene expression is still to be determined.

Interactions

DNA polymerase beta has been shown to interact with PNKP [17] and XRCC1. [18] [19] [20] [21]

See also

Model organisms

Model organisms have been used in the study of POLB function. A conditional knockout mouse line called Polbtm1a(KOMP)Wtsi was generated at the Wellcome Trust Sanger Institute. [22] Male and female animals underwent a standardized phenotypic screen [23] to determine the effects of deletion. [24] [25] [26] [27] Additional screens performed: In-depth immunological phenotyping [28]

Related Research Articles

<span class="mw-page-title-main">DNA polymerase</span> Form of DNA replication

A DNA polymerase is a member of a family of enzymes that catalyze the synthesis of DNA molecules from nucleoside triphosphates, the molecular precursors of DNA. These enzymes are essential for DNA replication and usually work in groups to create two identical DNA duplexes from a single original DNA duplex. During this process, DNA polymerase "reads" the existing DNA strands to create two new strands that match the existing ones. These enzymes catalyze the chemical reaction

<span class="mw-page-title-main">DNA repair</span> Cellular mechanism

DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encodes its genome. In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA damage, resulting in tens of thousands of individual molecular lesions per cell per day. Many of these lesions cause structural damage to the DNA molecule and can alter or eliminate the cell's ability to transcribe the gene that the affected DNA encodes. Other lesions induce potentially harmful mutations in the cell's genome, which affect the survival of its daughter cells after it undergoes mitosis. As a consequence, the DNA repair process is constantly active as it responds to damage in the DNA structure. When normal repair processes fail, and when cellular apoptosis does not occur, irreparable DNA damage may occur, including double-strand breaks and DNA crosslinkages. This can eventually lead to malignant tumors, or cancer as per the two-hit hypothesis.

<span class="mw-page-title-main">Nucleotide excision repair</span> DNA repair mechanism

Nucleotide excision repair is a DNA repair mechanism. DNA damage occurs constantly because of chemicals, radiation and other mutagens. Three excision repair pathways exist to repair single stranded DNA damage: Nucleotide excision repair (NER), base excision repair (BER), and DNA mismatch repair (MMR). While the BER pathway can recognize specific non-bulky lesions in DNA, it can correct only damaged bases that are removed by specific glycosylases. Similarly, the MMR pathway only targets mismatched Watson-Crick base pairs.

<span class="mw-page-title-main">Base excision repair</span> DNA repair process

Base excision repair (BER) is a cellular mechanism, studied in the fields of biochemistry and genetics, that repairs damaged DNA throughout the cell cycle. It is responsible primarily for removing small, non-helix-distorting base lesions from the genome. The related nucleotide excision repair pathway repairs bulky helix-distorting lesions. BER is important for removing damaged bases that could otherwise cause mutations by mispairing or lead to breaks in DNA during replication. BER is initiated by DNA glycosylases, which recognize and remove specific damaged or inappropriate bases, forming AP sites. These are then cleaved by an AP endonuclease. The resulting single-strand break can then be processed by either short-patch or long-patch BER.

<span class="mw-page-title-main">MUTYH</span> Protein-coding gene in the species Homo sapiens

MUTYH is a human gene that encodes a DNA glycosylase, MUTYH glycosylase. It is involved in oxidative DNA damage repair and is part of the base excision repair pathway. The enzyme excises adenine bases from the DNA backbone at sites where adenine is inappropriately paired with guanine, cytosine, or 8-oxo-7,8-dihydroguanine, a common form of oxidative DNA damage.

<span class="mw-page-title-main">XPB</span> Mammalian protein found in Homo sapiens

XPB is an ATP-dependent DNA helicase in humans that is a part of the TFIIH transcription factor complex.

<span class="mw-page-title-main">ERCC2</span> Mammalian protein found in humans

ERCC2, or XPD is a protein involved in transcription-coupled nucleotide excision repair.

Transcription factor II H (TFIIH) is an important protein complex, having roles in transcription of various protein-coding genes and DNA nucleotide excision repair (NER) pathways. TFIIH first came to light in 1989 when general transcription factor-δ or basic transcription factor 2 was characterized as an indispensable transcription factor in vitro. This factor was also isolated from yeast and finally named TFIIH in 1992.

<span class="mw-page-title-main">XRCC1</span> Protein

DNA repair protein XRCC1, also known as X-ray repair cross-complementing protein 1, is a protein that in humans is encoded by the XRCC1 gene. XRCC1 is involved in DNA repair, where it complexes with DNA ligase III.

<span class="mw-page-title-main">APEX1</span> Protein-coding gene in the species Homo sapiens

DNA-(apurinic or apyrimidinic site) lyase is an enzyme that in humans is encoded by the APEX1 gene.

<span class="mw-page-title-main">ERCC1</span> Protein-coding gene in the species Homo sapiens

DNA excision repair protein ERCC-1 is a protein that in humans is encoded by the ERCC1 gene. Together with ERCC4, ERCC1 forms the ERCC1-XPF enzyme complex that participates in DNA repair and DNA recombination.

<span class="mw-page-title-main">ERCC6</span> Gene of the species Homo sapiens

DNA excision repair protein ERCC-6 is a protein that in humans is encoded by the ERCC6 gene. The ERCC6 gene is located on the long arm of chromosome 10 at position 11.23.

<span class="mw-page-title-main">ERCC5</span> Protein-coding gene in the species Homo sapiens

DNA repair protein complementing XP-G cells is a protein that in humans is encoded by the ERCC5 gene.

<span class="mw-page-title-main">DNA polymerase lambda</span> Protein-coding gene in the species Homo sapiens

DNA polymerase lambda, also known as Pol λ, is an enzyme found in all eukaryotes. In humans, it is encoded by the POLL gene.

<span class="mw-page-title-main">ERCC8 (gene)</span> Protein-coding gene in humans

DNA excision repair protein ERCC-8 is a protein that in humans is encoded by the ERCC8 gene.

<span class="mw-page-title-main">GTF2A1L</span> Protein-coding gene in the species Homo sapiens

TFIIA-alpha and beta-like factor is a protein that in humans is encoded by the GTF2A1L gene.

<span class="mw-page-title-main">PARP2</span> Protein-coding gene in the species Homo sapiens

Poly [ADP-ribose] polymerase 2 is an enzyme that in humans is encoded by the PARP2 gene. It is one of the PARP family of enzymes.

<span class="mw-page-title-main">ZNF143</span> Protein-coding gene

Zinc finger protein 143 is a protein that in humans is encoded by the ZNF143 gene.

The DNA damage theory of aging proposes that aging is a consequence of unrepaired accumulation of naturally occurring DNA damage. Damage in this context is a DNA alteration that has an abnormal structure. Although both mitochondrial and nuclear DNA damage can contribute to aging, nuclear DNA is the main subject of this analysis. Nuclear DNA damage can contribute to aging either indirectly or directly.

<span class="mw-page-title-main">LIG3</span> Protein-coding gene in the species Homo sapiens

DNA ligase 3 is an enzyme that, in humans, is encoded by the LIG3 gene. The human LIG3 gene encodes ATP-dependent DNA ligases that seal interruptions in the phosphodiester backbone of duplex DNA.

References

  1. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000031536 - Ensembl, May 2017
  2. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. 1 2 "NCBI Gene: DNA polymerase beta".
  5. 1 2 Prasad R, Çağlayan M, Dai DP, Nadalutti CA, Zhao ML, Gassman NR, et al. (December 2017). "DNA polymerase β: A missing link of the base excision repair machinery in mammalian mitochondria". DNA Repair. 60: 77–88. doi:10.1016/j.dnarep.2017.10.011. PMC   5919216 . PMID   29100041.
  6. 1 2 Subba Rao K, Martin GM, Loeb LA (October 1985). "Fidelity of DNA polymerase-beta in neurons from young and very aged mice". Journal of Neurochemistry. 45 (4): 1273–8. doi:10.1111/j.1471-4159.1985.tb05553.x. PMID   3161998. S2CID   84448241.
  7. Orgel LE (June 1973). "Ageing of clones of mammalian cells". Nature. 243 (5408): 441–5. Bibcode:1973Natur.243..441O. doi:10.1038/243441a0. PMID   4591306. S2CID   4153800.
  8. 1 2 Cabelof DC, Raffoul JJ, Yanamadala S, Ganir C, Guo Z, Heydari AR (March 2002). "Attenuation of DNA polymerase beta-dependent base excision repair and increased DMS-induced mutagenicity in aged mice". Mutation Research. 500 (1–2): 135–45. doi:10.1016/s0027-5107(02)00003-9. PMC   3339152 . PMID   11890943.
  9. Bernstein C, Bernstein H (1991). Aging, Sex, and DNA Repair. San Diego: Academic Press. pp. 46–60. ISBN   0-12-092860-4.
  10. Canitrot Y, Cazaux C, Fréchet M, Bouayadi K, Lesca C, Salles B, Hoffmann JS (October 1998). "Overexpression of DNA polymerase beta in cell results in a mutator phenotype and a decreased sensitivity to anticancer drugs". Proceedings of the National Academy of Sciences of the United States of America. 95 (21): 12586–90. Bibcode:1998PNAS...9512586C. doi: 10.1073/pnas.95.21.12586 . PMC   22874 . PMID   9770529.
  11. Bergoglio V, Pillaire MJ, Lacroix-Triki M, Raynaud-Messina B, Canitrot Y, Bieth A, et al. (June 2002). "Deregulated DNA polymerase beta induces chromosome instability and tumorigenesis". Cancer Research. 62 (12): 3511–4. PMID   12067997.
  12. Bergoglio V, Canitrot Y, Hogarth L, Minto L, Howell SB, Cazaux C, Hoffmann JS (September 2001). "Enhanced expression and activity of DNA polymerase beta in human ovarian tumor cells: impact on sensitivity towards antitumor agents". Oncogene. 20 (43): 6181–7. doi:10.1038/sj.onc.1204743. PMID   11593426.
  13. Srivastava DK, Husain I, Arteaga CL, Wilson SH (June 1999). "DNA polymerase beta expression differences in selected human tumors and cell lines". Carcinogenesis. 20 (6): 1049–54. doi: 10.1093/carcin/20.6.1049 . PMID   10357787.
  14. He F, Yang XP, Srivastava DK, Wilson SH (January 2003). "DNA polymerase beta gene expression: the promoter activator CREB-1 is upregulated in Chinese hamster ovary cells by DNA alkylating agent-induced stress". Biological Chemistry. 384 (1): 19–23. doi:10.1515/BC.2003.003. PMID   12674496. S2CID   33798724.
  15. Narayan S, He F, Wilson SH (August 1996). "Activation of the human DNA polymerase beta promoter by a DNA-alkylating agent through induced phosphorylation of cAMP response element-binding protein-1". The Journal of Biological Chemistry. 271 (31): 18508–13. doi: 10.1074/jbc.271.31.18508 . PMID   8702497.
  16. Sarnowska E, Grzybowska EA, Sobczak K, Konopinski R, Wilczynska A, Szwarc M, et al. (2007). "Hairpin structure within the 3'UTR of DNA polymerase beta mRNA acts as a post-transcriptional regulatory element and interacts with Hax-1". Nucleic Acids Research. 35 (16): 5499–510. doi:10.1093/nar/gkm502. PMC   2018635 . PMID   17704138.
  17. Whitehouse CJ, Taylor RM, Thistlethwaite A, Zhang H, Karimi-Busheri F, Lasko DD, et al. (January 2001). "XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair". Cell. 104 (1): 107–17. doi: 10.1016/S0092-8674(01)00195-7 . PMID   11163244. S2CID   1487128.
  18. Wang L, Bhattacharyya N, Chelsea DM, Escobar PF, Banerjee S (November 2004). "A novel nuclear protein, MGC5306 interacts with DNA polymerase beta and has a potential role in cellular phenotype". Cancer Research. 64 (21): 7673–7. doi:10.1158/0008-5472.CAN-04-2801. PMID   15520167.
  19. Fan J, Otterlei M, Wong HK, Tomkinson AE, Wilson DM (2004). "XRCC1 co-localizes and physically interacts with PCNA". Nucleic Acids Research. 32 (7): 2193–201. doi:10.1093/nar/gkh556. PMC   407833 . PMID   15107487.
  20. Kubota Y, Nash RA, Klungland A, Schär P, Barnes DE, Lindahl T (December 1996). "Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase beta and the XRCC1 protein". The EMBO Journal. 15 (23): 6662–70. doi:10.1002/j.1460-2075.1996.tb01056.x. PMC   452490 . PMID   8978692.
  21. Bhattacharyya N, Banerjee S (July 2001). "A novel role of XRCC1 in the functions of a DNA polymerase beta variant". Biochemistry. 40 (30): 9005–13. doi:10.1021/bi0028789. PMID   11467963.
  22. Gerdin AK (2010). "The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x. S2CID   85911512.
  23. 1 2 "International Mouse Phenotyping Consortium".
  24. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, et al. (June 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC   3572410 . PMID   21677750.
  25. Dolgin E (June 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID   21677718.
  26. Collins FS, Rossant J, Wurst W (January 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi: 10.1016/j.cell.2006.12.018 . PMID   17218247. S2CID   18872015.
  27. White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, et al. (July 2013). "Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes". Cell. 154 (2): 452–64. doi:10.1016/j.cell.2013.06.022. PMC   3717207 . PMID   23870131.
  28. 1 2 "Infection and Immunity Immunophenotyping (3i) Consortium".

Further reading