Hypoxanthine-guanine phosphoribosyltransferase

Last updated
hypoxanthine phosphoribosyltransferase
5bsk.jpg
Identifiers
Aliases HPRTinosinic pyrophosphorylaseinosinate pyrophosphorylaseinosinic acid pyrophosphorylaseinosine 5'-phosphate pyrophosphorylaseIMP:diphosphate phospho-D-ribosyltransferaseHGPRTaseIMP diphosphorylaseIMP pyrophosphorylaseIMP-GMP pyrophosphorylase
External IDs GeneCards:
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) is an enzyme encoded in humans by the HPRT1 gene. [1] [2]

Contents

HGPRT is a transferase that catalyzes conversion of hypoxanthine to inosine monophosphate and guanine to guanosine monophosphate. This reaction transfers the 5-phosphoribosyl group from 5-phosphoribosyl 1-pyrophosphate (PRPP) to the purine. HGPRT plays a central role in the generation of purine nucleotides through the purine salvage pathway.

Function

hypoxanthine phosphoribosyltransferase
Identifiers
EC no. 2.4.2.8
CAS no. 9016-12-0
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

HGPRT catalyzes the following reactions:

SubstrateProductNotes
hypoxanthine inosine monophosphate
guanine guanosine monophosphate Often called HGPRT. Performs this function only in some species.
xanthine xanthosine monophosphate Only certain HPRTs.

HGPRTase functions primarily to salvage purines from degraded DNA to reintroduce into purine synthetic pathways. In this role, it catalyzes the reaction between guanine and phosphoribosyl pyrophosphate (PRPP) to form GMP, or between hypoxanthine and phosphoribosyl pyrophosphate (PRPP) to form inosine monophosphate.

Substrates and inhibitors

Comparative homology modelling of this enzyme in L. donovani suggest that among all of the computationally screened compounds, pentamidine, 1,3-dinitroadamantane, acyclovir and analogs of acyclovir had higher binding affinities than the real substrate (guanosine monophosphate). [3] The in silico and in-vitro correlation of these compounds were test in Leishmania HGPRT and validates the result. [4]

Role in disease

Mutations in the gene lead to hyperuricemia. At least 67 disease-causing mutations in this gene have been discovered: [5]

Creation of hybridomas

Hybridomas are immortal (immune to cellular senescence), HGPRT+ cells that result from fusion of mortal, HGPRT+ plasma cells and immortal, HGPRT myeloma cells. They are created to produce monoclonal antibodies in biotechnology. HAT medium inhibits de novo synthesis of nucleic acids, killing myeloma cells that cannot switch over to the salvage pathway, due to lack of HPRT1. The plasma cells in the culture eventually die from senescence, leaving pure hybridoma cells.

Related Research Articles

<span class="mw-page-title-main">Uridine monophosphate synthase</span> Protein-coding gene in the species Homo sapiens

The enzyme Uridine monophosphate synthase catalyses the formation of uridine monophosphate (UMP), an energy-carrying molecule in many important biosynthetic pathways. In humans, the gene that codes for this enzyme is located on the long arm of chromosome 3 (3q13).

A salvage pathway is a pathway in which a biological product is produced from intermediates in the degradative pathway of its own or a similar substance. The term often refers to nucleotide salvage in particular, in which nucleotides are synthesized from intermediates in their degradative pathway.

A nucleoside triphosphate is a nucleoside containing a nitrogenous base bound to a 5-carbon sugar, with three phosphate groups bound to the sugar. They are the molecular precursors of both DNA and RNA, which are chains of nucleotides made through the processes of DNA replication and transcription. Nucleoside triphosphates also serve as a source of energy for cellular reactions and are involved in signalling pathways.

<span class="mw-page-title-main">Lesch–Nyhan syndrome</span> Rare genetic disorder

Lesch–Nyhan syndrome (LNS) is a rare inherited disorder caused by a deficiency of the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRT). This deficiency occurs due to mutations in the HPRT1 gene located on the X chromosome. LNS affects about 1 in 380,000 live births. The disorder was first recognized and clinically characterized by American medical student Michael Lesch and his mentor, pediatrician William Nyhan, at Johns Hopkins.

<span class="mw-page-title-main">Adenosine deaminase</span> Mammalian protein found in Homo sapiens

Adenosine deaminase is an enzyme involved in purine metabolism. It is needed for the breakdown of adenosine from food and for the turnover of nucleic acids in tissues.

<span class="mw-page-title-main">HAT medium</span>

HAT Medium is a selection medium for mammalian cell culture, which relies on the combination of aminopterin, a drug that acts as a powerful folate metabolism inhibitor by inhibiting dihydrofolate reductase, with hypoxanthine and thymidine which are intermediates in DNA synthesis. The trick is that aminopterin blocks DNA de novo synthesis, which is absolutely required for cell division to proceed, but hypoxanthine and thymidine provide cells with the raw material to evade the blockage, provided that they have the right enzymes, which means having functioning copies of the genes that encode them.

<span class="mw-page-title-main">Adenine phosphoribosyltransferase</span> Mammalian protein found in Homo sapiens

Adenine phosphoribosyltransferase (APRTase) is an enzyme encoded by the APRT gene, found in humans on chromosome 16. It is part of the Type I PRTase family and is involved in the nucleotide salvage pathway, which provides an alternative to nucleotide biosynthesis de novo in humans and most other animals. In parasitic protozoa such as giardia, APRTase provides the sole mechanism by which AMP can be produced. APRTase deficiency contributes to the formation of kidney stones (urolithiasis) and to potential kidney failure.

<span class="mw-page-title-main">Adenine phosphoribosyltransferase deficiency</span> Medical condition

Adenine phosphoribosyltransferase deficiency is a rare autosomal recessive metabolic disorder caused by mutations of the APRT gene. Adenine phosphoribosyltransferase (APRT) catalyzes the creation of pyrophosphate and adenosine monophosphate from 5-phosphoribosyl-1-pyrophosphate and adenine. Adenine phosphoribosyltransferase is a purine salvage enzyme. Genetic mutations of adenine phosphoribosyltransferase make large amounts of 2,8-Dihydroxyadenine causing urolithiasis and renal failure.

<span class="mw-page-title-main">Purine nucleoside phosphorylase</span> Enzyme

Purine nucleoside phosphorylase, PNP, PNPase or inosine phosphorylase is an enzyme that in humans is encoded by the NP gene. It catalyzes the chemical reaction

<span class="mw-page-title-main">Phosphoribosyl pyrophosphate</span> Chemical compound

Phosphoribosyl pyrophosphate (PRPP) is a pentose phosphate. It is a biochemical intermediate in the formation of purine nucleotides via inosine-5-monophosphate, as well as in pyrimidine nucleotide formation. Hence it is a building block for DNA and RNA. The vitamins thiamine and cobalamin, and the amino acid tryptophan also contain fragments derived from PRPP. It is formed from ribose 5-phosphate (R5P) by the enzyme ribose-phosphate diphosphokinase:

<span class="mw-page-title-main">Nucleic acid metabolism</span> Process

Nucleic acid metabolism is a collective term that refers to the variety of chemical reactions by which nucleic acids are either synthesized or degraded. Nucleic acids are polymers made up of a variety of monomers called nucleotides. Nucleotide synthesis is an anabolic mechanism generally involving the chemical reaction of phosphate, pentose sugar, and a nitrogenous base. Degradation of nucleic acids is a catabolic reaction and the resulting parts of the nucleotides or nucleobases can be salvaged to recreate new nucleotides. Both synthesis and degradation reactions require multiple enzymes to facilitate the event. Defects or deficiencies in these enzymes can lead to a variety of diseases.

J(arvis) Edwin Seegmiller, or Jay Seegmiller, was an American physician and biochemical geneticist best known for his role in discovering the biochemical basis of the Lesch–Nyhan syndrome. He was a rheumatologist and a pioneer in research on arthritic diseases and on aging.

<span class="mw-page-title-main">Ribose 5-phosphate</span> Chemical compound

Ribose 5-phosphate (R5P) is both a product and an intermediate of the pentose phosphate pathway. The last step of the oxidative reactions in the pentose phosphate pathway is the production of ribulose 5-phosphate. Depending on the body's state, ribulose 5-phosphate can reversibly isomerize to ribose 5-phosphate. Ribulose 5-phosphate can alternatively undergo a series of isomerizations as well as transaldolations and transketolations that result in the production of other pentose phosphates as well as fructose 6-phosphate and glyceraldehyde 3-phosphate.

<span class="mw-page-title-main">Purine nucleoside phosphorylase deficiency</span> Medical condition

Purine nucleoside phosphorylase deficiency is a rare autosomal recessive metabolic disorder which results in immunodeficiency.

Purine metabolism refers to the metabolic pathways to synthesize and break down purines that are present in many organisms.

<span class="mw-page-title-main">Amidophosphoribosyltransferase</span> Mammalian protein found in Homo sapiens

Amidophosphoribosyltransferase (ATase), also known as glutamine phosphoribosylpyrophosphate amidotransferase (GPAT), is an enzyme responsible for catalyzing the conversion of 5-phosphoribosyl-1-pyrophosphate (PRPP) into 5-phosphoribosyl-1-amine (PRA), using the amine group from a glutamine side-chain. This is the committing step in de novo purine synthesis. In humans it is encoded by the PPAT gene. ATase is a member of the purine/pyrimidine phosphoribosyltransferase family.

<span class="mw-page-title-main">Ribose-phosphate diphosphokinase</span> Class of enzymes

Ribose-phosphate diphosphokinase is an enzyme that converts ribose 5-phosphate into phosphoribosyl pyrophosphate (PRPP). It is classified under EC 2.7.6.1.

<span class="mw-page-title-main">Somatic fusion</span> Genetic modification fusing plants into a hybrid

Somatic fusion, also called protoplast fusion, is a type of genetic modification in plants by which two distinct species of plants are fused together to form a new hybrid plant with the characteristics of both, a somatic hybrid. Hybrids have been produced either between different varieties of the same species or between two different species.

Nobuyo N. Maeda is a Japanese geneticist and medical researcher, who works on complex human diseases including atherosclerosis, diabetes and high blood pressure, and is particularly known for creating the first mouse model for atherosclerosis. Maeda has worked in the United States since 1978; as of 2017, she is the Robert H. Wagner Distinguished Professor at the University of North Carolina at Chapel Hill.

<span class="mw-page-title-main">Arts syndrome</span> Medical condition

Arts syndrome is a rare metabolic disorder that causes serious neurological problems in males due to a malfunction of the PRPP synthetase 1 enzyme. Arts Syndrome is part of a spectrum of PRPS-1 related disorders with reduced activity of the enzyme that includes Charcot–Marie–Tooth disease and X-linked non-syndromic sensorineural deafness.

References

  1. "Entrez Gene: hypoxanthine phosphoribosyltransferase 1 (Lesch-Nyhan syndrome)".
  2. Finette BA, Kendall H, Vacek PM (Aug 2002). "Mutational spectral analysis at the HPRT locus in healthy children". Mutation Research. 505 (1–2): 27–41. doi:10.1016/S0027-5107(02)00119-7. PMID   12175903.
  3. Ansari MY, Dikhit MR, Sahoo GC, Das P (Apr 2012). "Comparative modeling of HGPRT enzyme of L. donovani and binding affinities of different analogs of GMP". International Journal of Biological Macromolecules. 50 (3): 637–49. doi:10.1016/j.ijbiomac.2012.01.010. PMID   22327112.
  4. Ansari MY, Equbal A, Dikhit MR, Mansuri R, Rana S, Ali V, Sahoo GC, Das P (Nov 2015). "Establishment of Correlation between In-Silico &In-Vitro Test Analysis against Leishmania HGPRT to inhibitors". International Journal of Biological Macromolecules. 83: 78–96. doi:10.1016/j.ijbiomac.2015.11.051. PMID   26616453.
  5. Šimčíková D, Heneberg P (December 2019). "Refinement of evolutionary medicine predictions based on clinical evidence for the manifestations of Mendelian diseases". Scientific Reports. 9 (1): 18577. Bibcode:2019NatSR...918577S. doi:10.1038/s41598-019-54976-4. PMC   6901466 . PMID   31819097.
  6. Khattak FH, Morris IM, Harris K (May 1998). "Kelley-Seegmiller syndrome: a case report and review of the literature". British Journal of Rheumatology. 37 (5): 580–1. doi: 10.1093/rheumatology/37.5.580c . PMID   9651092.
  7. Hladnik U, Nyhan WL, Bertelli M (Sep 2008). "Variable expression of HPRT deficiency in 5 members of a family with the same mutation". Archives of Neurology. 65 (9): 1240–3. doi: 10.1001/archneur.65.9.1240 . PMID   18779430.
  8. Wu J, Bond C, Chen P, Chen M, Li Y, Shohet RV, Wright G (Feb 2015). "HIF-1α in the heart: Remodeling nucleotide metabolism". Journal of Molecular and Cellular Cardiology. 82: 194–200. doi:10.1016/j.yjmcc.2015.01.014. PMC   4405794 . PMID   25681585.

Further reading