Benzidine

Last updated
Benzidine
Benzidine 200.svg
Benzidine-3D-balls.png
Names
Preferred IUPAC name
[1,1′-Biphenyl]-4,4′-diamine
Other names
Benzidine, di-phenylamine, diphenylamine, 4,4'-bianiline, 4,4'-biphenyldiamine, 1,1'-biphenyl-4,4'-diamine, 4,4'-diaminobiphenyl, p-diaminodiphenyl, p-benzidine
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.002.000 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 202-199-1
KEGG
PubChem CID
RTECS number
  • DC9625000
UNII
UN number 1885
  • InChI=1S/C12H12N2/c13-11-5-1-9(2-6-11)10-3-7-12(14)8-4-10/h1-8H,13-14H2 Yes check.svgY
    Key: HFACYLZERDEVSX-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C12H12N2/c13-11-5-1-9(2-6-11)10-3-7-12(14)8-4-10/h1-8H,13-14H2
    Key: HFACYLZERDEVSX-UHFFFAOYAX
  • c2c(c1ccc(N)cc1)ccc(N)c2
Properties
C12H12N2
Molar mass 184.24 g/mol
AppearanceGrayish-yellow, reddish-gray, or white crystalline powder [1]
Density 1.25 g/cm3
Melting point 122 to 125 °C (252 to 257 °F; 395 to 398 K)
Boiling point 400 °C (752 °F; 673 K)
0.94 g/100 mL at 100 °C
-110.9·10−6 cm3/mol
Related compounds
Related compounds
biphenyl
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
carcinogenic
GHS labelling:
GHS-pictogram-exclam.svg GHS-pictogram-silhouette.svg GHS-pictogram-pollu.svg
Danger
H302, H350, H410
P201, P202, P264, P270, P273, P281, P301+P312, P308+P313, P330, P391, P405, P501
NIOSH (US health exposure limits):
PEL (Permissible)
occupational carcinogen [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Benzidine (trivial name), also called 1,1'-biphenyl-4,4'-diamine (systematic name), is an organic compound with the formula (C6H4NH2)2. It is an aromatic amine. It is a component of a test for cyanide. Related derivatives are used in the production of dyes. Benzidine has been linked to bladder and pancreatic cancer. [2]

Contents

Synthesis and properties

Benzidine is prepared in a two step process from nitrobenzene. First, the nitrobenzene is converted to 1,2-diphenylhydrazine, usually using iron powder as the reducing agent. Treatment of this hydrazine with mineral acids induces a rearrangement reaction to 4,4'-benzidine. Smaller amounts of other isomers are also formed. [3] The benzidine rearrangement, which proceeds intramolecularly, is a classic mechanistic puzzle in organic chemistry. [4]

Benzidine rearrangement.png

The conversion is described as a [5,5]sigmatropic reaction. [5] [6]

Mech-Benzidin-Umlagerung.png

In terms of its physical properties, 4,4'-benzidine is poorly soluble in cold water but can be recrystallized from hot water, where it crystallises as the monohydrate. It is dibasic, the deprotonated species has Ka values of 9.3 × 10−10 and 5.6 × 10−11. Its solutions react with oxidizing agents to give deeply coloured quinone-related derivatives.

Applications

Conversion of benzidine to the bis(diazonium) salt was once an integral step in the preparation of direct dyes (requiring no mordant). Treatment of this bis(diazonium) salt with 1-aminonaphthalene-4-sulfonic acid gives the once popular congo red dye. In the past, benzidine was used to test for blood. An enzyme in blood causes the oxidation of benzidine to a distinctively blue-coloured derivative. The test for cyanide relies on similar reactivity. Such applications have largely been replaced by methods using phenolphthalein/hydrogen peroxide and luminol.

The popular dye congo red is derived from benzidine. Congo-red-2D-skeletal.png
The popular dye congo red is derived from benzidine.

A variety of derivatives of 4,4’-benzidine are commercially produced on the scale of one to a few thousand kilograms per year, mainly as precursors to dyes and pigments. [3] These derivatives include, in order of scale, the following:

Safety

As with some other aromatic amines such as 2-naphthylamine, benzidine has been significantly withdrawn from use in most industries because it is so carcinogenic. In August 2010 benzidine dyes were included in the U.S. EPA's List of Chemicals of Concern. [7] The manufacture of Benzidine has been illegal in the UK since at least 2002 under the Control of Substances Hazardous to Health Regulations 2002 (COSHH).

Related Research Articles

In chemistry, amines are compounds and functional groups that contain a basic nitrogen atom with a lone pair. Amines are formally derivatives of ammonia, wherein one or more hydrogen atoms have been replaced by a substituent such as an alkyl or aryl group. Important amines include amino acids, biogenic amines, trimethylamine, and aniline. Inorganic derivatives of ammonia are also called amines, such as monochloramine.

The following outline is provided as an overview of and topical guide to organic chemistry:

<span class="mw-page-title-main">Aniline</span> Organic compound (C₆H₅NH₂); simplest aromatic amine

Aniline is an organic compound with the formula C6H5NH2. Consisting of a phenyl group attached to an amino group, aniline is the simplest aromatic amine. It is an industrially significant commodity chemical, as well as a versatile starting material for fine chemical synthesis. Its main use is in the manufacture of precursors to polyurethane, dyes, and other industrial chemicals. Like most volatile amines, it has the odor of rotten fish. It ignites readily, burning with a smoky flame characteristic of aromatic compounds. It is toxic to humans.

<span class="mw-page-title-main">Nitrobenzene</span> Chemical compound

Nitrobenzene is an organic compound with the chemical formula C6H5NO2. It is a water-insoluble pale yellow oil with an almond-like odor. It freezes to give greenish-yellow crystals. It is produced on a large scale from benzene as a precursor to aniline. In the laboratory, it is occasionally used as a solvent, especially for electrophilic reagents.

In organic chemistry, an aryl halide is an aromatic compound in which one or more hydrogen atoms, directly bonded to an aromatic ring are replaced by a halide. The haloarene are different from haloalkanes because they exhibit many differences in methods of preparation and properties. The most important members are the aryl chlorides, but the class of compounds is so broad that there are many derivatives and applications.

<span class="mw-page-title-main">Congo red</span> Chemical compound

Congo red is an organic compound, the sodium salt of 3,3′-([1,1′-biphenyl]-4,4′-diyl)bis(4-aminonaphthalene-1-sulfonic acid). It is an azo dye. Congo red is water-soluble, yielding a red colloidal solution; its solubility is greater in organic solvents. The use of Congo red in the textile industry has long been abandoned, primarily because of its carcinogenic properties, but it is still used for histological staining.

<span class="mw-page-title-main">Azo compound</span> Organic compounds with a diazenyl group (–N=N–)

Azo compounds are organic compounds bearing the functional group diazenyl.

<span class="mw-page-title-main">3,3'-Diaminobenzidine</span> Chemical compound

3,3′-Diaminobenzidine (DAB) is an organic compound with the formula (C6H3(NH2)2)2. This derivative of benzidine is a precursor to polybenzimidazole, which forms fibers that are renowned for their chemical and thermal stability. As its water-soluble tetrahydrochloride, DAB has been used in immunohistochemical staining of nucleic acids and proteins.

<span class="mw-page-title-main">Azo dye</span> Class of organic compounds used as dye

Azo dyes are organic compounds bearing the functional group R−N=N−R′, in which R and R′ are usually aryl and substituted aryl groups. They are a commercially important family of azo compounds, i.e. compounds containing the C-N=N-C linkage. Azo dyes are synthetic dyes and do not occur naturally. Most azo dyes contain only one azo group, but some dyes contain two or three azo groups, called "diazo dyes" and "triazo dyes" respectively. Azo dyes comprise 60-70% of all dyes used in food and textile industries. Azo dyes are widely used to treat textiles, leather articles, and some foods. Chemically related derivatives of azo dyes include azo pigments, which are insoluble in water and other solvents.

<span class="mw-page-title-main">Diazonium compound</span> Group of organonitrogen compounds

Diazonium compounds or diazonium salts are a group of organic compounds sharing a common functional group [R−N+≡N]X where R can be any organic group, such as an alkyl or an aryl, and X is an inorganic or organic anion, such as a halide.

In organic chemistry, an azo coupling is an organic reaction between a diazonium compound and another aromatic compound that produces an azo compound. In this electrophilic aromatic substitution reaction, the aryldiazonium cation is the electrophile and the activated carbon act as a nucleophile. In most cases, including the examples below, the diazonium compound is also aromatic.

<span class="mw-page-title-main">Anthranilic acid</span> Chemical compound

Anthranilic acid is an aromatic acid with the formula C6H4(NH2)(CO2H) and has a sweetish taste. The molecule consists of a benzene ring, ortho-substituted with a carboxylic acid and an amine. As a result of containing both acidic and basic functional groups, the compound is amphoteric. Anthranilic acid is a white solid when pure, although commercial samples may appear yellow. The anion [C6H4(NH2)(CO2)], obtained by the deprotonation of anthranilic acid, is called anthranilate. Anthranilic acid was once thought to be a vitamin and was referred to as vitamin L1 in that context, but it is now known to be non-essential in human nutrition.

<span class="mw-page-title-main">1-Naphthylamine</span> Chemical compound

1-Naphthylamine is an aromatic amine derived from naphthalene. It can cause bladder cancer. It crystallizes in colorless needles which melt at 50 °C. It possesses a disagreeable odor, sublimes readily, and turns brown on exposure to air. It is the precursor to a variety of dyes.

<span class="mw-page-title-main">Tolidine</span> Chemical compound

2-Tolidine (orthotolidine, o-tolidine; not to be confused with o-toluidine) is an organic compound with the chemical formula (C6H4(CH3)NH2)2. Several isomers are known; the 3-tolidine derivative is also important commercially. It is a colorless compound although commercial samples are often colored. It is slightly soluble in water. It forms salts with acids, such as the hydrochloride, which is commercially available.

4,4′-Methylenebis(2-chloroaniline) is a substance used as a curing agent in polyurethane production. MOCA is an aromatic amine which is structurally similar to benzidine, a known human bladder carcinogen. MOCA has been shown to cause hepatomas in mice and rats, lung and mammary carcinomas in rats and bladder cancer in dogs. It is a proven human carcinogen standing on the WHO List of IARC Group 1 carcinogens, with a current threshold limit value of 0.01 ppm in the industrial atmosphere. Animal studies have resulted in tumor growth in the liver, lung, and bladder.

<span class="mw-page-title-main">Diketene</span> Organic compound with formula (CH2CO)2

Diketene is an organic compound with the molecular formula C4H4O2, and which is sometimes written as (CH2CO)2. It is formed by dimerization of ketene, H2C=C=O. Diketene is a member of the oxetane family. It is used as a reagent in organic chemistry. It is a colorless liquid.

<span class="mw-page-title-main">3,3'-Dichlorobenzidine</span> Chemical compound

3,3'-Dichlorobenzidine is an organic compound with the formula (C6H3Cl(NH2))2. The pure compound is pale yellow, but commercial samples are often colored. It is barely soluble in water and is often supplied as a wet paste. It is widely used in the production of diarylide yellow pigments used in the production of printing inks. Its use in the production of dyes has been largely discontinued because of concerns about carcinogenicity.

4,4′-Methylenedianiline (MDA) is an organic compound with the formula CH2(C6H4NH2)2. It is a colorless solid, although commercial samples can appear yellow or brown. It is produced on an industrial scale, mainly as a precursor to polyurethanes.

4-Nitrotoluene or para-nitrotoluene is an organic compound with the formula CH3C6H4NO2. It is a pale yellow solid. It is one of three isomers of nitrotoluene.

<i>o</i>-Dianisidine Chemical compound

o-Dianisidine is an organic compound with the formula [(CH3O)(H2N)C6H3]2. A colorless or white solid, it is a bifunctional compound derived via the benzidine rearrangement from o-anisidine.

References

  1. 1 2 NIOSH Pocket Guide to Chemical Hazards. "#0051". National Institute for Occupational Safety and Health (NIOSH).
  2. "Known and Probable Carcinogens". American Cancer Society. 2011-06-29. Archived from the original on 2008-03-17. Retrieved 2007-01-12.
  3. 1 2 Schwenecke, H.; Mayer, D. (2005). "Benzidine and Benzidine Derivatives". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a03_539.
  4. March, J. (1992). Advanced Organic Chemistry (5th ed.). New York: J. Wiley and Sons. ISBN   0-471-60180-2.
  5. Shine, H. J.; Zmuda, H.; Park, K. H.; Kwart, H.; Horgan, A. G.; Collins, C.; Maxwell, B. E. (1981). "Mechanism of the benzidine rearrangement. Kinetic isotope effects and transition states. Evidence for concerted rearrangement". Journal of the American Chemical Society. 103 (4): 955–956. doi:10.1021/ja00394a047..
  6. Shine, H. J.; Zmuda, H.; Park, K. H.; Kwart, H.; Horgan, A. G.; Brechbiel, M. (1982). "Benzidine rearrangements. 16. The use of heavy-atom kinetic isotope effects in solving the mechanism of the acid-catalyzed rearrangement of hydrazobenzene. The concerted pathway to benzidine and the nonconcerted pathway to diphenyline". Journal of the American Chemical Society. 104 (9): 2501–2509. doi:10.1021/ja00373a028.
  7. "Benzidine Dyes Action Plan Summary". U. S. Environmental Protection Agency. 2010-08-18. Archived from the original on 2010-08-21.