Luminol

Last updated

Contents

Luminol [1]
Luminol.svg
Luminol molecule ball.png
Names
Preferred IUPAC name
5-Amino-2,3-dihydrophthalazine-1,4-dione
Other names
5-Amino-2,3-dihydro-1,4-phthalazinedione
o-Aminophthaloyl hydrazide
o-Aminophthalyl hydrazide
3-Aminophthalhydrazide
3-Aminophthalic hydrazide
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.007.556 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 208-309-4
PubChem CID
UNII
  • InChI=1S/C8H7N3O2/c9-5-3-1-2-4-6(5)8(13)11-10-7(4)12/h1-3H,9H2,(H,10,12)(H,11,13) Yes check.svgY
    Key: HWYHZTIRURJOHG-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C8H7N3O2/c9-5-3-1-2-4-6(5)8(13)11-10-7(4)12/h1-3H,9H2,(H,10,12)(H,11,13)
    Key: HWYHZTIRURJOHG-UHFFFAOYAB
  • C1=CC2=C(C(=C1)N)C(=O)NNC2=O
Properties
C8H7N3O2
Molar mass 177.16 g/mol
Melting point 319 °C (606 °F; 592 K)
Hazards
NFPA 704 (fire diamond)
NFPA 704.svgHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
1
0
Safety data sheet (SDS) MSDS for luminol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Luminol (C8H7N3O2) is a chemical that exhibits chemiluminescence, with a blue glow, when mixed with an appropriate oxidizing agent. Luminol is a white-to-pale-yellow crystalline solid that is soluble in most polar organic solvents but insoluble in water.

Forensic investigators use luminol to detect trace amounts of blood at crime scenes, as it reacts with the iron in hemoglobin. Biologists use it in cellular assays to detect copper, iron, and cyanides as well as specific proteins via western blotting. [2]

When luminol is sprayed evenly across an area, trace amounts of an activating oxidant make the luminol emit a blue glow that can be seen in a darkened room. The glow only lasts about 30 seconds but can be documented photographically. The glow is stronger in areas receiving more spray; the intensity of the glow does not indicate the amount of blood or other activator present.

Synthesis

Luminol is synthesized in a two-step process, beginning with 3-nitrophthalic acid. [3] [4] First, hydrazine (N2H4) is heated with the 3-nitrophthalic acid in a high-boiling solvent such as triethylene glycol and glycerol. A condensation reaction occurs, with loss of water, forming 3-nitrophthalhydrazide. Reduction of the nitro group to an amino group with sodium dithionite (Na2S2O4), via a transient hydroxylamine intermediate, produces luminol.

Luminol synthesis.png

The compound was first synthesized in Germany in 1902 [5] but was not named luminol until 1934. [3] [6]

Chemiluminescence

Chemiluminescence of luminol Luminol2006.jpg
Chemiluminescence of luminol

To exhibit its luminescence, the luminol must be activated with an oxidant. Usually, a solution containing hydrogen peroxide (H2O2) and hydroxide ions in water is the activator. In the presence of a catalyst such as an iron or periodate compound, the hydrogen peroxide decomposes to form oxygen and water:

2 H2O2O2 + 2 H2O
H2O2 + KIO4 → KIO3 + O2 + H2O

Laboratory settings often use potassium ferricyanide or potassium periodate for the catalyst. In the forensic detection of blood, the catalyst is the iron present in hemoglobin. [7] Enzymes in a variety of biological systems may also catalyse the decomposition of hydrogen peroxide.

The exact mechanism of luminol chemiluminescence is a complex multi-step reaction, especially in aqueous conditions. A recent theoretical investigation has been able to elucidate the reaction cascade as shown below. [8] Luminol is first deprotonated in basic conditions then oxidized to the anionic radical, which in turn has two paths available to give the key intermediate α-hydroxy- peroxide. After cyclization to the endoperoxide, the mono-anion will undergo decomposition without luminescence if the pH is too low (< 8.2) for a second deprotonation. The endoperoxide dianion, however, can give the retro-Diels–Alder product: 1,2-dioxane-3,6-dione dianion, and after chemiexcitation by two single-electron transfers (SET) gives 3-aminophthalate dianion in its first singlet excited state (S1). This highly instable molecule relaxes to the ground state, thereby emitting light of around 425 nm wavelength (purple-blue), thus chemiluminescence.

Use in criminal investigation

History

In 1928, German chemist H. O. Albrecht found that blood, among other substances, enhanced the luminescence of luminol in an alkaline solution of hydrogen peroxide. [9] [10] In 1936, Karl Gleu and Karl Pfannstiel confirmed this enhancement in the presence of haematin, a component of blood. [11] In 1937, German forensic scientist Walter Specht made extensive studies of luminol's application to the detection of blood at crime scenes. [12] In 1939, San Francisco pathologists Frederick Proescher and A. M. Moody made three important observations about luminol: [13] [14]

  1. although the test is presumptive, large areas of suspected material can be examined rapidly;
  2. dried and decomposed blood gave a stronger and more lasting reaction than fresh blood; and
  3. if the luminescence disappears, it may be reproduced by the application of a fresh luminol–hydrogen-peroxide solution; dried bloodstains may thus be made luminescent repeatedly.

Theory

Crime scene investigators use luminol to find traces of blood, even if someone has cleaned or removed it. The investigator sprays a solution of luminol and the oxidant. The iron in blood catalyses the luminescence. The amount of catalyst necessary to cause the reaction is very small relative to the amount of luminol, allowing detection of even trace amounts of blood. The blue glow lasts for about 30 seconds per application. Detecting the glow requires a fairly dark room. Any glow detected may be documented by a long-exposure photograph.

Drawbacks

Luminol's use in a crime scene investigation is somewhat hampered by the fact that it reacts to iron- and copper-containing compounds, [15] bleaches, horseradish, fecal matter, and cigarette smoke residue. [14] Application of luminol to a piece of evidence may prevent other tests from being performed on it; however, DNA has been successfully extracted from samples exposed to luminol. [16]

See also

Related Research Articles

<span class="mw-page-title-main">Hydrogen peroxide</span> Chemical compound

Hydrogen peroxide is a chemical compound with the formula H2O2. In its pure form, it is a very pale blue liquid that is slightly more viscous than water. It is used as an oxidizer, bleaching agent, and antiseptic, usually as a dilute solution in water for consumer use and in higher concentrations for industrial use. Concentrated hydrogen peroxide, or "high-test peroxide", decomposes explosively when heated and has been used as both a monopropellant and an oxidizer in rocketry.

<span class="mw-page-title-main">Catalase</span> Enzyme decomposing hydrogen peroxide

Catalase is a common enzyme found in nearly all living organisms exposed to oxygen which catalyzes the decomposition of hydrogen peroxide to water and oxygen. It is a very important enzyme in protecting the cell from oxidative damage by reactive oxygen species (ROS). Catalase has one of the highest turnover numbers of all enzymes; one catalase molecule can convert millions of hydrogen peroxide molecules to water and oxygen each second.

<span class="mw-page-title-main">Chemiluminescence</span> Emission of light as a result of a chemical reaction

Chemiluminescence is the emission of light (luminescence) as the result of a chemical reaction, i.e. a chemical reaction results in a flash or glow of light. A standard example of chemiluminescence in the laboratory setting is the luminol test. Here, blood is indicated by luminescence upon contact with iron in hemoglobin. When chemiluminescence takes place in living organisms, the phenomenon is called bioluminescence. A light stick emits light by chemiluminescence.

<span class="mw-page-title-main">Sodium percarbonate</span> Chemical compound

Sodium percarbonate or sodium carbonate peroxide is a chemical substance with formula Na2H3CO6. It is an adduct of sodium carbonate and hydrogen peroxide whose formula is more properly written as 2 Na2CO3 · 3 H2O2. It is a colorless, crystalline, hygroscopic and water-soluble solid. It is sometimes abbreviated as SPC. It contains 32.5% by weight of hydrogen peroxide.

<span class="mw-page-title-main">Hypochlorous acid</span> Chemical compound

Hypochlorous acid is an inorganic compound with the chemical formula ClOH, also written as HClO, HOCl, or ClHO. Its structure is H−O−Cl. It is an acid that forms when chlorine dissolves in water, and itself partially dissociates, forming a hypochlorite anion, ClO. HClO and ClO are oxidizers, and the primary disinfection agents of chlorine solutions. HClO cannot be isolated from these solutions due to rapid equilibration with its precursor, chlorine.

<span class="mw-page-title-main">Calcium peroxide</span> Chemical compound

Calcium peroxide or calcium dioxide is the inorganic compound with the formula CaO2. It is the peroxide (O22−) salt of Ca2+. Commercial samples can be yellowish, but the pure compound is white. It is almost insoluble in water.

<span class="mw-page-title-main">Chemical decomposition</span> Breakdown of a chemical species into two or more parts; reverse process of a synthesis reaction

Chemical decomposition, or chemical breakdown, is the process or effect of simplifying a single chemical entity into two or more fragments. Chemical decomposition is usually regarded and defined as the exact opposite of chemical synthesis. In short, the chemical reaction in which two or more products are formed from a single reactant is called a decomposition reaction.

Respiratory burst is the rapid release of the reactive oxygen species (ROS), superoxide anion and hydrogen peroxide, from different cell types.

<span class="mw-page-title-main">Organic peroxides</span> Organic compounds of the form R–O–O–R’

In organic chemistry, organic peroxides are organic compounds containing the peroxide functional group. If the R′ is hydrogen, the compounds are called hydroperoxides, which are discussed in that article. The O−O bond of peroxides easily breaks, producing free radicals of the form RO. Thus, organic peroxides are useful as initiators for some types of polymerization, such as the acrylic, unsaturated polyester, and vinyl ester resins used in glass-reinforced plastics. MEKP and benzoyl peroxide are commonly used for this purpose. However, the same property also means that organic peroxides can explosively combust. Organic peroxides, like their inorganic counterparts, are often powerful bleaching agents.

Sodium perborate is chemical compound whose chemical formula may be written NaH2BO4, Na2H4B2O8, or, more properly, [Na+]2[B2O4(OH)4]2−. Its name is sometimes abbreviated as PBS.

<span class="mw-page-title-main">Piranha solution</span> Oxidizing acid mixture containing sulfuric acid and hydrogen peroxide

Piranha solution, also known as piranha etch, is a mixture of sulfuric acid and hydrogen peroxide. The resulting mixture is used to clean organic residues off substrates, for example silicon wafers. Because the mixture is a strong oxidizing agent, it will decompose most organic matter, and it will also hydroxylate most surfaces, making them highly hydrophilic (water-compatible). This means the solution can also easily dissolve fabric and skin, potentially causing severe damage and chemical burns in case of inadvertent contact. It is named after the piranha fish due to its tendency to rapidly dissolve and 'consume' organic materials through vigorous chemical reactions.

Peracetic acid (also known as peroxyacetic acid, or PAA) is an organic compound with the formula CH3CO3H. This peroxy acid is a colorless liquid with a characteristic acrid odor reminiscent of acetic acid. It can be highly corrosive.

<span class="mw-page-title-main">Pentetic acid</span> DTPA: aminopolycarboxylic acid

Pentetic acid or diethylenetriaminepentaacetic acid (DTPA) is an aminopolycarboxylic acid consisting of a diethylenetriamine backbone with five carboxymethyl groups. The molecule can be viewed as an expanded version of EDTA and is used similarly. It is a white solid with limited solubility in water.

<span class="mw-page-title-main">Chromium(VI) oxide peroxide</span> Chemical compound

Chromium(VI) oxide peroxide is the name given to a collection of chromium coordination complexes. They have the formula CrO(O2)2L where L is a ligand. These species are dark blue and often labile. They all feature oxo ligand and two peroxo ligands, with the remaining coordination sites occupied by water, hydroxide, ether, or other Lewis bases.

The Pinnick oxidation is an organic reaction by which aldehydes can be oxidized into their corresponding carboxylic acids using sodium chlorite (NaClO2) under mild acidic conditions. It was originally developed by Lindgren and Nilsson. The typical reaction conditions used today were developed by G. A. Kraus. H.W. Pinnick later demonstrated that these conditions could be applied to oxidize α,β-unsaturated aldehydes. There exist many different reactions to oxidize aldehydes, but only a few are amenable to a broad range of functional groups. The Pinnick oxidation has proven to be both tolerant of sensitive functionalities and capable of reacting with sterically hindered groups. This reaction is especially useful for oxidizing α,β-unsaturated aldehydes, and another one of its advantages is its relatively low cost.

In situ chemical oxidation (ISCO), a form of advanced oxidation process, is an environmental remediation technique used for soil and/or groundwater remediation to lower the concentrations of targeted environmental contaminants to acceptable levels. ISCO is accomplished by introducing strong chemical oxidizers into the contaminated medium to destroy chemical contaminants in place. It can be used to remediate a variety of organic compounds, including some that are resistant to natural degradation. The in situ in ISCO is just Latin for "in place", signifying that ISCO is a chemical oxidation reaction that occurs at the site of the contamination.

<span class="mw-page-title-main">3-Aminophthalic acid</span> Chemical compound

3-Aminophthalic acid is a product of the oxidation of luminol. The reaction requires the presence of a catalyst. A mixture of luminol and hydrogen peroxide is used in forensics. When the mixture is sprayed on an area that contains blood, the iron in the hemoglobin in the blood catalyzes a reaction between the mixture, resulting in 3-aminophthalate which gives out light by chemiluminescence.

<span class="mw-page-title-main">Bleach activator</span>

Bleach activators are compounds that allow a lower washing temperature than would be required otherwise to achieve the full activity of bleaching agents in the wash liquor. Bleaching agents, usually peroxides, are usually sufficiently active only from 60 °C on. With bleach activators, this activity can already be achieved at lower temperatures. Bleach activators react with hydrogen peroxide in aqueous solution to form peroxy acids. Peroxy acids are more active bleaches than hydrogen peroxide at lower temperatures (<60 °C) but are too unstable to be stored in their active form and hence must be generated in situ.

<span class="mw-page-title-main">Metal peroxide</span>

Metal peroxides are metal-containing compounds with ionically- or covalently-bonded peroxide (O2−
2
) groups. This large family of compounds can be divided into ionic and covalent peroxide. The first class mostly contains the peroxides of the alkali and alkaline earth metals whereas the covalent peroxides are represented by such compounds as hydrogen peroxide and peroxymonosulfuric acid (H2SO5). In contrast to the purely ionic character of alkali metal peroxides, peroxides of transition metals have a more covalent character.

Chemiluminescence is the emission of light through a chemical reaction. It contrasts with fluorescence, which is excited by a light source. During chemiluminescence, the vibrationally excited product of an exoergic chemical reaction relaxes to its ground state with the emission of photons. Since the process does not require excitation light, problems in its application caused by light scattering or source instability are absent, and there is no concern about autofluorescence in the background, which can lead to highly sensitive deep tissue imaging.

References

  1. Merck Index, 11th Edition, 5470.
  2. Khan, Parvez; Idrees, Danish; MOxley, Michael A.; et al. (May 2014). "Luminol-Based Chemiluminescent Signals: Clinical and Non-clinical Application and Future Uses". Applied Biochemical Biotechnology. 173 (2): 333–355. doi:10.1007/s12010-014-0850-1. PMC   4426882 . PMID   24752935.
  3. 1 2 Ernest Huntress; Lester Stanley; Almon Parker (1934). "The preparation of 3-aminophthalhydrazide for use in the demonstration of chemiluminescence". Journal of the American Chemical Society . 56 (1): 241–242. doi:10.1021/ja01316a077.
  4. Synthesis of luminol
  5. See:
    • Aloys Josef Schmitz, "Ueber das Hydrazid der Trimesinsäure und der Hemimellithsäure" Archived 2015-01-02 at the Wayback Machine (On the hydrazide of trimesic acid [1,3,5-benzenetricarboxylic acid] and of hemimellitic acid [1,2,3-benzenetricarboxylic acid]), Inaugural Dissertation, Heidelberg University, 1902; pp. 17, 39–43. Schmitz calls luminol "1-amino-2,3-phtalsäurehydrazid".
    • Note: Gill states that luminol was prepared as early as 1853. See: Steven K. Gill (1983) "New developments in chemiluminescence research," Aldrichimica Acta16 (3) : 59–61; has footnote 2 on p. 60. Available at: Aldrichimica Acta Archived 2015-01-08 at the Wayback Machine . However, the sources Gill cites don't mention the preparation of luminol before 1902. Gill probably confused luminol with lophine (2,4,5-triphenyl-1H -imidazole), which the sources he cites do mention. Lophine is also chemiluminescent, and was first prepared in 1844 by Auguste Laurent. (See: Auguste Laurent (1844) "Sur un nouvel alcali organique, la lophine" (On a new organic alkali, lophine), Revue scientifique et industrielle, 18: 272–278.) The chemiluminescence of lophine was first observed by: Radziszewski, Bronisław L. (1877) "Untersuchungen über Hydrobenzamid, Amarin und Lophin" Archived 2015-12-14 at the Wayback Machine (Investigations of hydrobenzamide, amarine, and lophine), Berichte der Deutschen chemischen Gesellschaft zu Berlin, 10 : 70–75. In 1853, Ludwig Teichmann developed a test for blood, but it did not rely on chemiluminescence. See: L Teichmann (1853) "Ueber die Krystallisation der organischen Bestandtheile des Bluts" (On the crystallization of the organic components of blood), Zeitschrift für rationelle Medicin, new series, 3 : 375–388.
  6. Huntress, Ernest H.; Stanley, Lester N.; Parker, Almon S. (1934). "The oxidation of 3-aminophthalhydrazide ("luminol") as a lecture demonstration of chemiluminescence". Journal of Chemical Education. 11 (3): 142. Bibcode:1934JChEd..11..142H. doi:10.1021/ed011p142.
  7. Ples, Marek. "Chemiluminescence activated by blood". www.weirdscience.eu (in Polish). Archived from the original on 3 January 2015. Retrieved 23 December 2014.
  8. Yue, Ling; Liu, Yi-Tong (3 September 2020). "Mechanistic Insight into pH-Dependent Luminol Chemiluminescence in Aqueous Solution". The Journal of Physical Chemistry B. 124 (35): 7682–7693. doi:10.1021/acs.jpcb.0c06301. ISSN   1520-6106. PMID   32790377. S2CID   221125324.
  9. H. O. Albrecht (1928) "Über die Chemiluminescenz des Aminophthalsäurehydrazids" (On the chemiluminescence of aminophthalic acid hydrazide) Zeitschrift für Physikalische Chemie136: 321–330.
  10. Stuart H. James and William G. Eckert, Interpretation of Bloodstain Evidence at Crime Scenes, 2nd ed. (Boca Raton, Florida: CRC Press LLC, 1998), page 154 Archived 2017-02-15 at the Wayback Machine .
  11. Gleu, Karl; Pfannstiel, Karl (1936) "Über 3-aminophthalsaure-hydrazid" Journal für Praktische Chemie146: 137–150.
  12. Specht, Walter (1937) "Die Chemiluminescenz des Hämins, ein Hilfsmittel zur Auffindung und Erkennung forensisch wichtiger Blutspuren" (The chemiluminescence of haemin, an aid to the finding and recognition of forensically significant blood traces), Angewandte Chemie50 (8): 155–157.
  13. Proescher F. and Moody A.M. (1939) "Detection of blood by means of chemiluminescence," Journal of Laboratory and Clinical Medicine, 24 : 1183–1189.
  14. 1 2 James, Stuart; Kish, Paul E.; Sutton, Paulette Sutton (2005). Principles of Bloodstsain Pattern Analysis. Boca Raton, London, New York, Singapore: Taylor and Francis Group. p.  376. ISBN   0-8493-2014-3.
  15. Ples, Marek. "Chemiluminescence of luminol activated by copper compound". www.weirdscience.eu (in Polish). Archived from the original on 3 January 2015. Retrieved 23 December 2014.
  16. Technical note about Hemaglow Archived January 2, 2015, at the Wayback Machine