TFIIH subunit XPD is a protein that in humans is encoded by the ERCC2 (ERCC excision repair 2) gene. It is a component of the general transcription and DNA repair factor IIH (TFIIH) core complex involved in transcription-coupled nucleotide excision repair.
Along with XPB, XPD is a part of human transcriptional initiation factor TFIIH and has ATP-dependent helicase activity. [5] It belongs to the RAD3/XPD subfamily of helicases.
The XPD (ERCC2) gene encodes for a 2.3-kb mRNA containing 22 exons and 21 introns. The XPD protein contains 760 amino acids and is a polypeptide with a size of 87kDa. Defects in this gene can result in three different disorders: the cancer-prone syndrome xeroderma pigmentosum complementation group D, photosensitive trichothiodystrophy, and Cockayne syndrome. [6]
XPD is essential for the viability of cells. Deletion of XPD in mice is lethal for developing embryos. [7]
XPD helicase is also employed in p53-mediated apoptotic cell death. [8]
The ERCC2/XPD protein participates in nucleotide excision repair and is used in unwinding the DNA double helix after damage is initially identified. Nucleotide excision repair is a multi-step pathway that removes a wide range of different damages that distort normal base pairing. Such damages include bulky chemical adducts, ultraviolet-induced pyrimidine dimers, and several forms of oxidative damage.
The protein named XPD is expressed under the directions of the ERCC2 gene. The XPD protein is an indispensable part of the general transcription factor IIH (TFIIH) complex, which is a group of proteins. The two vital functions of the TFIIH complex are gene transcription and repairing damaged DNA. With the help of gene transcription, the TFIIH complex is able to control the functioning of many different genes in the body and the XPD protein acts as a stabilizer. XPB is another protein in the general transcription factor IIH (TFIIH) complex and is made from the ERCC3 gene, which works in coordination with XDP protein to commence the process of gene transcription.
Ultraviolet rays emerging from the sun, various hazardous chemicals, harmful radiations, are all known parameters for the sabotage of the DNA. A normal and healthy cell has the capability to fix the DNA damages before the problems begin due to the damaged DNA. Cells use nucleotide excision repair to fix damaged DNA. As a part of the process, the double-stranded DNA that encircles the damage is separated by the TFIIH complex. The XPD protein acts as a helicase and helps with the nucleotide excision repair process by binding to the specific regions of DNA and by unwinding the two DNA spiral strands. This exposes the damaged protein which allows the other proteins to remove the damaged section and replace the impaired area with the correct DNA. [9]
Mutations in the ERCC2/XPD gene can lead to various syndromes, either xeroderma pigmentosum (XP), trichothiodystrophy (TTD) or a combination of XP and TTD (XPTTD), or a combination of XP and Cockayne syndrome (XPCS). [10] TTD and CS both display features of premature aging. These features may include sensorineural deafness, retinal degeneration, white matter hypomethylation, central nervous system calcification, reduced stature, and cachexia (loss of subcutaneous fat tissue). [10] [11] XPCS and TTD fibroblasts from ERCC2/XPD mutant human and mouse show evidence of defective repair of oxidative DNA damages that may underlie the segmental progeroid (premature aging) symptoms [12] (see DNA damage theory of aging).
Xeroderma pigmentosum (XP) is associated with the lack of DNA repair mechanism and high susceptibility of cancer. A slight insufficiency in the DNA repair mechanism may result in the development of cancer. Some cancers have been recognized with the help of the relation between the single nucleotide polymorphism and genes. The XPD protein produced by the ERCC2 gene plays an important role in the process of transcription and cell death and is also known for nucleotide excision repair pathway. Various literature studies have reviewed the correlation between polymorphisms in ERCC2 and reduced DNA repair efficiency and their influence on the development of the cancers as well as interaction with environmental exposures.
The second most common cause of xeroderma pigmentosum in the United States are due to mutations in ERCC2 gene, more than twenty-five of which have been observed in people with this disease. The xeroderma pigmentosum is caused when the ERCC2 gene prevents the TFIIH complex from repairing the damaged DNA constructively.
Consequently, all the deformity collects inside the DNA, sabotaging the repair mechanism and results in the cancerous or dead cells. Thus, the people suffering from xeroderma pigmentosum are highly sensitive to the ultraviolet rays from the sunlight due to the DNA repair problems.
So, when ultraviolet rays harm the genes, the cell grows and divides in an uncontrolled fashion and is highly prone to be cancerous. Xeroderma pigmentosum have high risk of developing cancer in skin and eyes as they are the areas mostly exposed to sun. Xeroderma pigmentosum caused by ERCC2 mutations is associated with the numerable developmental neurological malfunctioning which includes; hearing loss, poor coordination, mobility issues, lack of intellectual abilities, difficulties in talking, walking, swallowing the food and seizures.
Researchers suspect that these neurological abnormalities are due to the accumulation of DNA damage despite the brain not being exposed to ultraviolet rays. Other factors might cause the DNA damage in nerve cells as well. [13]
ERCC2 has been shown to interact with:
Click on genes, proteins and metabolites below to link to respective articles. [§ 1]
Helicases are a class of enzymes thought to be vital to all organisms. Their main function is to unpack an organism's genetic material. Helicases are motor proteins that move directionally along a nucleic acid phosphodiester backbone, separating two hybridized nucleic acid strands, using energy from ATP hydrolysis. There are many helicases, representing the great variety of processes in which strand separation must be catalyzed. Approximately 1% of eukaryotic genes code for helicases.
Xeroderma pigmentosum (XP) is a genetic disorder in which there is a decreased ability to repair DNA damage such as that caused by ultraviolet (UV) light. Symptoms may include a severe sunburn after only a few minutes in the sun, freckling in sun-exposed areas, dry skin and changes in skin pigmentation. Nervous system problems, such as hearing loss, poor coordination, loss of intellectual function and seizures, may also occur. Complications include a high risk of skin cancer, with about half having skin cancer by age 10 without preventative efforts, and cataracts. There may be a higher risk of other cancers such as brain cancers.
Nucleotide excision repair is a DNA repair mechanism. DNA damage occurs constantly because of chemicals, radiation and other mutagens. Three excision repair pathways exist to repair single stranded DNA damage: Nucleotide excision repair (NER), base excision repair (BER), and DNA mismatch repair (MMR). While the BER pathway can recognize specific non-bulky lesions in DNA, it can correct only damaged bases that are removed by specific glycosylases. Similarly, the MMR pathway only targets mismatched Watson-Crick base pairs.
XPB is an ATP-dependent DNA helicase in humans that is a part of the TFIIH transcription factor complex.
A DNA repair-deficiency disorder is a medical condition due to reduced functionality of DNA repair.
Richard D. Wood is an American molecular biologist specializing in research on DNA repair and mutation. He is known for pioneering studies on nucleotide excision repair (NER), particularly for reconstituting the minimum set of proteins involved in this process, identifying proliferating cell nuclear antigen (PCNA) as part of the NER complex and identifying mammalian repair polymerases.
Transcription factor II H (TFIIH) is an important protein complex, having roles in transcription of various protein-coding genes and DNA nucleotide excision repair (NER) pathways. TFIIH first came to light in 1989 when general transcription factor-δ or basic transcription factor 2 was characterized as an indispensable transcription factor in vitro. This factor was also isolated from yeast and finally named TFIIH in 1992.
DNA damage-binding protein 2 is a protein that in humans is encoded by the DDB2 gene.
The enzyme DNA-(apurinic or apyrimidinic site) lyase, also referred to as DNA-(apurinic or apyrimidinic site) 5'-phosphomonoester-lyase or DNA AP lyase catalyzes the cleavage of the C-O-P bond 3' from the apurinic or apyrimidinic site in DNA via β-elimination reaction, leaving a 3'-terminal unsaturated sugar and a product with a terminal 5'-phosphate. In the 1970s, this class of enzyme was found to repair at apurinic or apyrimidinic DNA sites in E. coli and in mammalian cells. The major active enzyme of this class in bacteria, and specifically, E. coli is endonuclease type III. This enzyme is part of a family of lyases that cleave carbon-oxygen bonds.
Xeroderma pigmentosum, complementation group C, also known as XPC, is a protein which in humans is encoded by the XPC gene. XPC is involved in the recognition of bulky DNA adducts in nucleotide excision repair. It is located on chromosome 3.
DNA repair protein complementing XP-A cells is a protein that in humans is encoded by the XPA gene.
DNA excision repair protein ERCC-6 is a protein that in humans is encoded by the ERCC6 gene. The ERCC6 gene is located on the long arm of chromosome 10 at position 11.23.
DNA repair protein complementing XP-G cells is a protein that in humans is encoded by the ERCC5 gene.
ERCC4 is a protein designated as DNA repair endonuclease XPF that in humans is encoded by the ERCC4 gene. Together with ERCC1, ERCC4 forms the ERCC1-XPF enzyme complex that participates in DNA repair and DNA recombination.
DNA excision repair protein ERCC-8 is a protein that in humans is encoded by the ERCC8 gene.
General transcription factor IIH subunit 2 is a protein that in humans is encoded by the GTF2H2 gene.
General transcription factor IIH subunit 5 is a protein that in humans is encoded by the GTF2H5 gene.
Trichothiodystrophy (TTD) is an autosomal recessive inherited disorder characterised by brittle hair and intellectual impairment. The word breaks down into tricho – "hair", thio – "sulphur", and dystrophy – "wasting away" or literally "bad nourishment". TTD is associated with a range of symptoms connected with organs of the ectoderm and neuroectoderm. TTD may be subclassified into four syndromes: Approximately half of all patients with trichothiodystrophy have photosensitivity, which divides the classification into syndromes with or without photosensitivity; BIDS and PBIDS, and IBIDS and PIBIDS. Modern covering usage is TTD-P (photosensitive), and TTD.
In molecular biology, this protein domain represents Tbf5 which stands for TTDA subunit of TFIIH basal transcription factor complex, and Rex1 a type of nucleotide excision repair (NER) proteins. Nucleotide excision repair is a major pathway for repairing UV light-induced DNA damage in most organisms. The function of this protein is to aid transcription.
Progeroid syndromes (PS) are a group of rare genetic disorders that mimic physiological aging, making affected individuals appear to be older than they are. The term progeroid syndrome does not necessarily imply progeria, which is a specific type of progeroid syndrome.