Adenosine diphosphate ribose

Last updated
Adenosine diphosphate ribose
ADP ribose.svg
ADP-ribose 3D.png
Three-dimensional model of ADP ribose.png
Names
Other names
ADP ribose
ADPR
Adenosine 5'-diphosphoribose
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
MeSH Adenosine+Diphosphate+Ribose
PubChem CID
UNII
  • InChI=1S/C15H23N5O14P2/c16-12-7-13(18-3-17-12)20(4-19-7)14-10(24)9(23)6(31-14)2-30-35(26,27)34-36(28,29)33-15-11(25)8(22)5(1-21)32-15/h3-6,8-11,14-15,21-25H,1-2H2,(H4,16,17,18,26,27,28,29)/p+1/t5-,6+,8-,9+,10+,11-,14+,15+/m0/s1 X mark.svgN
    Key: YNCNQNWXUFCWJS-DKMYFHGXSA-O X mark.svgN
  • InChI=1/C15H23N5O14P2/c16-12-7-13(18-3-17-12)20(4-19-7)14-10(24)9(23)6(31-14)2-30-35(26,27)34-36(28,29)33-15-11(25)8(22)5(1-21)32-15/h3-6,8-11,14-15,21-25H,1-2H2,(H4,16,17,18,26,27,28,29)/p+1/t5-,6+,8-,9+,10+,11-,14+,15+/m0/s1
    Key: YNCNQNWXUFCWJS-LKOYDKQFBH
  • O=P(O[C@H]1O[C@H]([C@H](O)[C@@H]1O)CO)(O)OP(=O)(OC[C@H]4O[C@@H](n3c2ncnc(N)c2nc3)[C@H](O)[C@@H]4O)O
Properties
C15H23N5O14P2
Molar mass 559.316 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Adenosine diphosphate ribose (ADPR) is an ester molecule formed into chains by the enzyme poly ADP ribose polymerase. [1] ADPR is created from cyclic ADP-ribose (cADPR) by the CD38 enzyme using nicotinamide adenine dinucleotide (NAD+) as a cofactor. [1]

ADPR binds to and activates the TRPM2 ion channel. [2] ADPR is the most potent agonist of the TRPM2 channel. [3] cADPR also binds to TPRM2, and the action of both molecules is synergistic, with both molecules enhancing the action of the other molecule in activating the TRPM2 channel. [4] Researchers are not sure how the Adenosine diphosphate reacts with the TRPM2 channel, but the ribose sugar may play a role in activating the TRPM2 ion channel. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Adenosine triphosphate</span> Energy-carrying molecule in living cells

Adenosine triphosphate (ATP) is a nucleotide that provides energy to drive and support many processes in living cells, such as muscle contraction, nerve impulse propagation, condensate dissolution, and chemical synthesis. Found in all known forms of life, it is often referred to as the "molecular unit of currency" of intracellular energy transfer.

<span class="mw-page-title-main">Adenine</span> Chemical compound in DNA and RNA

Adenine is a purine nucleobase. It is one of the four nucleobases in the nucleic acids of DNA, the other three being guanine (G), cytosine (C), and thymine (T). Adenine derivatives have various roles in biochemistry including cellular respiration, in the form of both the energy-rich adenosine triphosphate (ATP) and the cofactors nicotinamide adenine dinucleotide (NAD), flavin adenine dinucleotide (FAD) and Coenzyme A. It also has functions in protein synthesis and as a chemical component of DNA and RNA. The shape of adenine is complementary to either thymine in DNA or uracil in RNA.

<span class="mw-page-title-main">Nicotinamide adenine dinucleotide</span> Chemical compound which is reduced and oxidized

Nicotinamide adenine dinucleotide (NAD) is a coenzyme central to metabolism. Found in all living cells, NAD is called a dinucleotide because it consists of two nucleotides joined through their phosphate groups. One nucleotide contains an adenine nucleobase and the other, nicotinamide. NAD exists in two forms: an oxidized and reduced form, abbreviated as NAD+ and NADH (H for hydrogen), respectively.

<span class="mw-page-title-main">Poly (ADP-ribose) polymerase</span> Family of proteins

Poly (ADP-ribose) polymerase (PARP) is a family of proteins involved in a number of cellular processes such as DNA repair, genomic stability, and programmed cell death.

<span class="mw-page-title-main">CD38</span> Protein-coding gene in the species Homo sapiens

CD38 (cluster of differentiation 38), also known as cyclic ADP ribose hydrolase is a glycoprotein found on the surface of many immune cells (white blood cells), including CD4+, CD8+, B lymphocytes and natural killer cells. CD38 also functions in cell adhesion, signal transduction and calcium signaling.

<span class="mw-page-title-main">Cyclic ADP-ribose</span> Chemical compound

Cyclic ADP-ribose, frequently abbreviated as cADPR, is a cyclic adenine nucleotide (like cAMP) with two phosphate groups present on 5' OH of the adenosine (like ADP), further connected to another ribose at the 5' position, which, in turn, closes the cycle by glycosidic bonding to the nitrogen 1 (N1) of the same adenine base (whose position N9 has the glycosidic bond to the other ribose). The N1-glycosidic bond to adenine is what distinguishes cADPR from ADP-ribose (ADPR), the non-cyclic analog. cADPR is produced from nicotinamide adenine dinucleotide (NAD+) by ADP-ribosyl cyclases (EC 3.2.2.5) as part of a second messenger system.

<span class="mw-page-title-main">Nicotinic acid adenine dinucleotide phosphate</span> Chemical compound

Nicotinic acid adenine dinucleotide phosphate, (NAADP), is a Ca2+-mobilizing second messenger synthesised in response to extracellular stimuli. Like its mechanistic cousins, IP3 and cyclic adenosine diphosphoribose (Cyclic ADP-ribose), NAADP binds to and opens Ca2+ channels on intracellular organelles, thereby increasing the intracellular Ca2+ concentration which, in turn, modulates sundry cellular processes (see Calcium signalling). Structurally, it is a dinucleotide that only differs from the house-keeping enzyme cofactor, NADP by a hydroxyl group (replacing the nicotinamide amino group) and yet this minor modification converts it into the most potent Ca2+-mobilizing second messenger yet described. NAADP acts across phyla from plants to humans.

Adenosine thiamine triphosphate (AThTP), or thiaminylated adenosine triphosphate, is a natural thiamine adenine nucleotide. It was discovered in Escherichia coli where it may account for up to 15 - 20% of total thiamine under carbon starvation. AThTP also exists in eukaryotic organisms such as yeast, roots of higher plants and animal tissues, albeit at a much lower concentration. It was found to exist in small amounts in the muscle, heart, brain, kidneys and liver of mice.

<span class="mw-page-title-main">Ribose 5-phosphate</span> Chemical compound

Ribose 5-phosphate (R5P) is both a product and an intermediate of the pentose phosphate pathway. The last step of the oxidative reactions in the pentose phosphate pathway is the production of ribulose 5-phosphate. Depending on the body's state, ribulose 5-phosphate can reversibly isomerize to ribose 5-phosphate. Ribulose 5-phosphate can alternatively undergo a series of isomerizations as well as transaldolations and transketolations that result in the production of other pentose phosphates as well as fructose 6-phosphate and glyceraldehyde 3-phosphate.

<span class="mw-page-title-main">ADP-ribosylation</span> Addition of one or more ADP-ribose moieties to a protein.

ADP-ribosylation is the addition of one or more ADP-ribose moieties to a protein. It is a reversible post-translational modification that is involved in many cellular processes, including cell signaling, DNA repair, gene regulation and apoptosis. Improper ADP-ribosylation has been implicated in some forms of cancer. It is also the basis for the toxicity of bacterial compounds such as cholera toxin, diphtheria toxin, and others.

NAD<sup>+</sup> kinase Enzyme

NAD+ kinase (EC 2.7.1.23, NADK) is an enzyme that converts nicotinamide adenine dinucleotide (NAD+) into NADP+ through phosphorylating the NAD+ coenzyme. NADP+ is an essential coenzyme that is reduced to NADPH primarily by the pentose phosphate pathway to provide reducing power in biosynthetic processes such as fatty acid biosynthesis and nucleotide synthesis. The structure of the NADK from the archaean Archaeoglobus fulgidus has been determined.

<span class="mw-page-title-main">TRPM2</span> Protein-coding gene in the species Homo sapiens

Transient receptor potential cation channel, subfamily M, member 2, also known as TRPM2, is a protein that in humans is encoded by the TRPM2 gene.

<span class="mw-page-title-main">PARP1</span> Mammalian protein found in Homo sapiens

Poly [ADP-ribose] polymerase 1 (PARP-1) also known as NAD+ ADP-ribosyltransferase 1 or poly[ADP-ribose] synthase 1 is an enzyme that in humans is encoded by the PARP1 gene. It is the most abundant of the PARP family of enzymes, accounting for 90% of the NAD+ used by the family. PARP1 is mostly present in cell nucleus, but cytosolic fraction of this protein was also reported.

<span class="mw-page-title-main">ADP-ribose diphosphatase</span>

ADP-ribose diphosphatase (EC 3.6.1.13) is an enzyme that catalyzes a hydrolysis reaction in which water nucleophilically attacks ADP-ribose to produce AMP and D-ribose 5-phosphate. Enzyme hydrolysis occurs by the breakage of a phosphoanhydride bond and is dependent on Mg2+ ions that are held in complex by the enzyme.

NAD<sup>+</sup> glycohydrolase Enzyme

In enzymology, a NAD+ glycohydrolase (EC 3.2.2.5) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">ADP-ribosyl cyclase</span>

In enzymology, a ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase (EC 3.2.2.6) is a bifunctional enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">NMNAT1</span> Protein-coding gene in the species Homo sapiens

Nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1) is an enzyme that in humans is encoded by the nmnat1 gene. It is a member of the nicotinamide-nucleotide adenylyltransferases (NMNATs) which catalyze nicotinamide adenine dinucleotide (NAD) synthesis.

<span class="mw-page-title-main">BST1</span> Protein-coding gene in the species Homo sapiens

Bst1 is an enzyme that in humans is encoded by the BST1 gene. CD157 is a paralog of CD38, both of which are located on chromosome 4 (4p15) in humans.

<span class="mw-page-title-main">3-Aminobenzamide</span> Chemical compound

3-Aminobenzamide is a benzamide. It is an off-white powder and has the chemical formula C7H8N2O.

Parthanatos is a form of programmed cell death that is distinct from other cell death processes such as necrosis and apoptosis. While necrosis is caused by acute cell injury resulting in traumatic cell death and apoptosis is a highly controlled process signalled by apoptotic intracellular signals, parthanatos is caused by the accumulation of Poly(ADP ribose) (PAR) and the nuclear translocation of apoptosis-inducing factor (AIF) from mitochondria. Parthanatos is also known as PARP-1 dependent cell death. PARP-1 mediates parthanatos when it is over-activated in response to extreme genomic stress and synthesizes PAR which causes nuclear translocation of AIF. Parthanatos is involved in diseases that afflict hundreds of millions of people worldwide. Well known diseases involving parthanatos include Parkinson's disease, stroke, heart attack, and diabetes. It also has potential use as a treatment for ameliorating disease and various medical conditions such as diabetes and obesity.

References

  1. 1 2 Braidy N, Berg J, Clement J, Sachdev P (2019). "Role of Nicotinamide Adenine Dinucleotide and Related Precursors as Therapeutic Targets for Age-Related Degenerative Diseases: Rationale, Biochemistry, Pharmacokinetics, and Outcomes". Antioxidants & Redox Signaling . 10 (2): 251–294. doi:10.1089/ars.2017.7269. PMC   6277084 . PMID   29634344.
  2. Fonfria E, Marshall IC, Benham CD, et al. (September 2004). "TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase". Br. J. Pharmacol. 143 (1): 186–92. doi:10.1038/sj.bjp.0705914. PMC   1575275 . PMID   15302683.
  3. Yu P, Cai X, Liang Y, Yang W (2019). "Roles of NAD + and Its Metabolites Regulated Calcium Channels in Cancer". Molecules . 25 (20): 4826. doi: 10.3390/molecules25204826 . PMC   7587972 . PMID   33092205.
  4. Lee HC (2011). "Cyclic ADP-ribose and NAADP: fraternal twin messengers for calcium signaling". Science China Life Sciences. 54 (8): 699–711. doi: 10.1007/s11427-011-4197-3 . PMID   21786193. S2CID   24286381.
  5. Baszczyňski, Ondřej; Watt, Joanna M.; Rozewitz, Monika D.; Guse, Andreas H.; Fliegert, Ralf; Potter, Barry V. L. (2019). "Synthesis of Terminal Ribose Analogues of Adenosine 5′-Diphosphate Ribose as Probes for the Transient Receptor Potential Cation Channel TRPM2". The Journal of Organic Chemistry. 84 (10): 6143–6157. doi:10.1021/acs.joc.9b00338. PMC   6528165 . PMID   30978018.