Structural motif

Last updated

In a chain-like biological molecule, such as a protein or nucleic acid, a structural motif is a common three-dimensional structure that appears in a variety of different, evolutionarily unrelated molecules. [1] A structural motif does not have to be associated with a sequence motif; it can be represented by different and completely unrelated sequences in different proteins or RNA.

Contents

In nucleic acids

Depending upon the sequence and other conditions, nucleic acids can form a variety of structural motifs which is thought to have biological significance.

Stem-loop
Stem-loop intramolecular base pairing is a pattern that can occur in single-stranded DNA or, more commonly, in RNA. [2] The structure is also known as a hairpin or hairpin loop. It occurs when two regions of the same strand, usually complementary in nucleotide sequence when read in opposite directions, base-pair to form a double helix that ends in an unpaired loop. The resulting structure is a key building block of many RNA secondary structures.
Cruciform DNA
Cruciform DNA is a form of non-B DNA that requires at least a 6 nucleotide sequence of inverted repeats to form a structure consisting of a stem, branch point and loop in the shape of a cruciform, stabilized by negative DNA supercoiling. [3] Two classes of cruciform DNA have been described; folded and unfolded.
G-quadruplex
G-quadruplex secondary structures (G4) are formed in nucleic acids by sequences that are rich in guanine. [4] They are helical in shape and contain guanine tetrads that can form from one, [5] two [6] or four strands. [7]
D-loop
A displacement loop or D-loop is a DNA structure where the two strands of a double-stranded DNA molecule are separated for a stretch and held apart by a third strand of DNA. [8] An R-loop is similar to a D-loop, but in this case the third strand is RNA rather than DNA. [9] The third strand has a base sequence which is complementary to one of the main strands and pairs with it, thus displacing the other complementary main strand in the region. Within that region the structure is thus a form of triple-stranded DNA. A diagram in the paper introducing the term illustrated the D-loop with a shape resembling a capital "D", where the displaced strand formed the loop of the "D". [10]

In proteins

In proteins, a structural motif describes the connectivity between secondary structural elements. An individual motif usually consists of only a few elements, e.g., the 'helix-turn-helix' motif which has just three. Note that, while the spatial sequence of elements may be identical in all instances of a motif, they may be encoded in any order within the underlying gene. In addition to secondary structural elements, protein structural motifs often include loops of variable length and unspecified structure. Structural motifs may also appear as tandem repeats.

Beta hairpin
Extremely common. Two antiparallel beta strands connected by a tight turn of a few amino acids between them.
Greek key
Four beta strands, three connected by hairpins, the fourth folded over the top.
Omega loop
A loop in which the residues that make up the beginning and end of the loop are very close together. [11]
Helix-loop-helix
Consists of alpha helices bound by a looping stretch of amino acids. This motif is seen in transcription factors.
Zinc finger
Two beta strands with an alpha helix end folded over to bind a zinc ion. Important in DNA binding proteins.
Helix-turn-helix
Two α helices joined by a short strand of amino acids and found in many proteins that regulate gene expression. [12]
Nest
Extremely common. Three consecutive amino acid residues form an anion-binding concavity. [13]
Niche
Extremely common. Three or four consecutive amino acid residues form a cation-binding feature. [14]

See also

Related Research Articles

Base pair Unit consisting of two nucleobases bound to each other by hydrogen bonds

A base pair (bp) is a fundamental unit of double-stranded nucleic acids consisting of two nucleobases bound to each other by hydrogen bonds. They form the building blocks of the DNA double helix and contribute to the folded structure of both DNA and RNA. Dictated by specific hydrogen bonding patterns, "Watson–Crick" base pairs allow the DNA helix to maintain a regular helical structure that is subtly dependent on its nucleotide sequence. The complementary nature of this based-paired structure provides a redundant copy of the genetic information encoded within each strand of DNA. The regular structure and data redundancy provided by the DNA double helix make DNA well suited to the storage of genetic information, while base-pairing between DNA and incoming nucleotides provides the mechanism through which DNA polymerase replicates DNA and RNA polymerase transcribes DNA into RNA. Many DNA-binding proteins can recognize specific base-pairing patterns that identify particular regulatory regions of genes.

DNA Molecule that carries genetic information

Deoxyribonucleic acid is a molecule composed of two polynucleotide chains that coil around each other to form a double helix carrying genetic instructions for the development, functioning, growth and reproduction of all known organisms and many viruses. DNA and ribonucleic acid (RNA) are nucleic acids. Alongside proteins, lipids and complex carbohydrates (polysaccharides), nucleic acids are one of the four major types of macromolecules that are essential for all known forms of life.

Nucleic acid Class of large biomolecules essential to all known life

Nucleic acids are biopolymers, macromolecules, essential to all known forms of life. They are composed of nucleotides, which are the monomers made of three components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main classes of nucleic acids are deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). If the sugar is ribose, the polymer is RNA; if the sugar is the ribose derivative deoxyribose, the polymer is DNA.

RNA Family of large biological molecules

Ribonucleic acid (RNA) is a polymeric molecule essential in various biological roles in coding, decoding, regulation and expression of genes. RNA and deoxyribonucleic acid (DNA) are nucleic acids. Along with lipids, proteins, and carbohydrates, nucleic acids constitute one of the four major macromolecules essential for all known forms of life. Like DNA, RNA is assembled as a chain of nucleotides, but unlike DNA, RNA is found in nature as a single strand folded onto itself, rather than a paired double strand. Cellular organisms use messenger RNA (mRNA) to convey genetic information that directs synthesis of specific proteins. Many viruses encode their genetic information using an RNA genome.

Nucleic acid sequence Succession of nucleotides in a nucleic acid

A nucleic acid sequence is a succession of bases signified by a series of a set of five different letters that indicate the order of nucleotides forming alleles within a DNA or RNA (GACU) molecule. By convention, sequences are usually presented from the 5' end to the 3' end. For DNA, the sense strand is used. Because nucleic acids are normally linear (unbranched) polymers, specifying the sequence is equivalent to defining the covalent structure of the entire molecule. For this reason, the nucleic acid sequence is also termed the primary structure.

Hoogsteen base pair

A Hoogsteen base pair is a variation of base-pairing in nucleic acids such as the A•T pair. In this manner, two nucleobases, one on each strand, can be held together by hydrogen bonds in the major groove. A Hoogsteen base pair applies the N7 position of the purine base and C6 amino group, which bind the Watson–Crick (N3–C4) face of the pyrimidine base.

Stem-loop Intramolecular base-pairing pattern in RNA and DNA

Stem-loop intramolecular base pairing is a pattern that can occur in single-stranded RNA. The structure is also known as a hairpin or hairpin loop. It occurs when two regions of the same strand, usually complementary in nucleotide sequence when read in opposite directions, base-pair to form a double helix that ends in an unpaired loop. The resulting structure is a key building block of many RNA secondary structures. As an important secondary structure of RNA, it can direct RNA folding, protect structural stability for messenger RNA (mRNA), provide recognition sites for RNA binding proteins, and serve as a substrate for enzymatic reactions.

A DNA-binding domain (DBD) is an independently folded protein domain that contains at least one structural motif that recognizes double- or single-stranded DNA. A DBD can recognize a specific DNA sequence or have a general affinity to DNA. Some DNA-binding domains may also include nucleic acids in their folded structure.

G-quadruplex Structure in molecular biology

In molecular biology, G-quadruplex secondary structures (G4) are formed in nucleic acids by sequences that are rich in guanine. They are helical in shape and contain guanine tetrads that can form from one, two or four strands. The unimolecular forms often occur naturally near the ends of the chromosomes, better known as the telomeric regions, and in transcriptional regulatory regions of multiple genes, both in microbes and across vertebrates including oncogenes in humans. Four guanine bases can associate through Hoogsteen hydrogen bonding to form a square planar structure called a guanine tetrad, and two or more guanine tetrads can stack on top of each other to form a G-quadruplex.

Palindromic sequence DNA or RNA sequence that matches its complement when read backwards

A palindromic sequence is a nucleic acid sequence in a double-stranded DNA or RNA molecule whereby reading in a certain direction on one strand is identical to the sequence in the same direction on the complementary strand. This definition of palindrome thus depends on complementary strands being palindromic of each other.

In biochemistry, two biopolymers are antiparallel if they run parallel to each other but with opposite directionality (alignments). An example is the two complementary strands of a DNA double helix, which run in opposite directions alongside each other.

Tetraloop

Tetraloops are a type of four-base hairpin loop motifs in RNA secondary structure that cap many double helices. There are many variants of the tetraloop. The published ones include ANYA, CUYG, GNRA, UNAC and UNCG.

DHX36

Probable ATP-dependent RNA helicase DHX36 also known as DEAH box protein 36 (DHX36) or MLE-like protein 1 (MLEL1) or G4 resolvase 1 (G4R1) or RNA helicase associated with AU-rich elements (RHAU) is an enzyme that in humans is encoded by the DHX36 gene.

Nucleic acid tertiary structure

Nucleic acid tertiary structure is the three-dimensional shape of a nucleic acid polymer. RNA and DNA molecules are capable of diverse functions ranging from molecular recognition to catalysis. Such functions require a precise three-dimensional tertiary structure. While such structures are diverse and seemingly complex, they are composed of recurring, easily recognizable tertiary structure motifs that serve as molecular building blocks. Some of the most common motifs for RNA and DNA tertiary structure are described below, but this information is based on a limited number of solved structures. Many more tertiary structural motifs will be revealed as new RNA and DNA molecules are structurally characterized.

Nucleic acid structure Biomolecular structure of nucleic acids such as DNA and RNA

Nucleic acid structure refers to the structure of nucleic acids such as DNA and RNA. Chemically speaking, DNA and RNA are very similar. Nucleic acid structure is often divided into four different levels: primary, secondary, tertiary, and quaternary.

Nucleic acid secondary structure

Nucleic acid secondary structure is the basepairing interactions within a single nucleic acid polymer or between two polymers. It can be represented as a list of bases which are paired in a nucleic acid molecule. The secondary structures of biological DNA's and RNA's tend to be different: biological DNA mostly exists as fully base paired double helices, while biological RNA is single stranded and often forms complex and intricate base-pairing interactions due to its increased ability to form hydrogen bonds stemming from the extra hydroxyl group in the ribose sugar.

Complementarity (molecular biology) Lock-and-key pairing between two structures

In molecular biology, complementarity describes a relationship between two structures each following the lock-and-key principle. In nature complementarity is the base principle of DNA replication and transcription as it is a property shared between two DNA or RNA sequences, such that when they are aligned antiparallel to each other, the nucleotide bases at each position in the sequences will be complementary, much like looking in the mirror and seeing the reverse of things. This complementary base pairing allows cells to copy information from one generation to another and even find and repair damage to the information stored in the sequences.

Cruciform DNA

Cruciform DNA is a form of non-B DNA, or an alternative DNA structure. The formation of cruciform DNA requires the presence of palindromes called inverted repeat sequences. These inverted repeats contain a sequence of DNA in one strand that is repeated in the opposite direction on the other strand. As a result, inverted repeats are self-complementary and can give rise to structures such as hairpins and cruciforms. Cruciform DNA structures require at least a six nucleotide sequence of inverted repeats to form a structure consisting of a stem, branch point and loop in the shape of a cruciform, stabilized by negative DNA supercoiling.

i-motif DNA, short for intercalated-motif DNA, are cytosine-rich four-stranded quadruplex DNA structures, similar to the G-quadruplex structures that are formed in guanine-rich regions of DNA.

Guanine tetrad Structure in molecular biology

In molecular biology, a guanine tetrad is a structure composed of four guanine bases in a square planar array. They most prominently contribute to the structure of G-quadruplexes, where their hydrogen bonding stabilizes the structure. Usually, there are at least two guanine tetrads in a G-quadruplex, and they often feature Hoogsteen-style hydrogen bonding.

References

  1. Johansson, M.U. (23 July 2012). "Defining and searching for structural motifs using DeepView/Swiss-PdbViewer". BMC Bioinformatics. 13 (173): 173. doi: 10.1186/1471-2105-13-173 . PMC   3436773 . PMID   22823337.
  2. Bolshoy, Alexander (2010). Genome Clustering: From Linguistic Models to Classification of Genetic Texts. Springer. p. 47. ISBN   9783642129513 . Retrieved 24 March 2021.
  3. Shlyakhtenko LS, Potaman VN, Sinden RR, Lyubchenko YL (July 1998). "Structure and dynamics of supercoil-stabilized DNA cruciforms". J. Mol. Biol. 280 (1): 61–72. CiteSeerX   10.1.1.555.4352 . doi:10.1006/jmbi.1998.1855. PMID   9653031.
  4. Routh ED, Creacy SD, Beerbower PE, Akman SA, Vaughn JP, Smaldino PJ (March 2017). "A G-quadruplex DNA-affinity Approach for Purification of Enzymaticacvly Active G4 Resolvase1". Journal of Visualized Experiments. 121 (121). doi:10.3791/55496. PMC   5409278 . PMID   28362374.
  5. Largy E, Mergny J, Gabelica V (2016). "Chapter 7. Role of Alkali Metal Ions in G-Quadruplex Nucleic Acid Structure and Stability". In Astrid S, Helmut S, Roland KO S (eds.). The Alkali Metal Ions: Their Role in Life (PDF). Metal Ions in Life Sciences. Vol. 16. Springer. pp. 203–258. doi:10.1007/978-3-319-21756-7_7. PMID   26860303.
  6. Sundquist WI, Klug A (December 1989). "Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops". Nature. 342 (6251): 825–9. Bibcode:1989Natur.342..825S. doi:10.1038/342825a0. PMID   2601741. S2CID   4357161.
  7. Sen D, Gilbert W (July 1988). "Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis". Nature. 334 (6180): 364–6. Bibcode:1988Natur.334..364S. doi:10.1038/334364a0. PMID   3393228. S2CID   4351855.
  8. DePamphilis, Melvin (2011). Genome Duplication. Garland Science, Taylor & Francis Group, LLC. p. 419. ISBN   9780415442060 . Retrieved 24 March 2021.
  9. Al-Hadid, Qais (July 1, 2016). "R-loop: an emerging regulator of chromatin dynamics". Acta Biochim Biophys Sin (Shanghai). 48 (7): 623–31. doi: 10.1093/abbs/gmw052 . PMC   6259673 . PMID   27252122.
  10. Kasamatsu, H.; Robberson, D. L.; Vinograd, J. (1971). "A novel closed-circular mitochondrial DNA with properties of a replicating intermediate". Proceedings of the National Academy of Sciences of the United States of America. 68 (9): 2252–2257. Bibcode:1971PNAS...68.2252K. doi: 10.1073/pnas.68.9.2252 . PMC   389395 . PMID   5289384.
  11. Hettiarachchy, Navam S (2012). Food Proteins and Peptides: Chemistry, Functionality, Interactions, and Commercialization. CRC Press Taylor & Francis Group. p. 16. ISBN   9781420093421 . Retrieved 24 March 2021.
  12. Dubey, R C (2014). Advanced Biotechnology. S Chand Publishing. p. 505. ISBN   978-8121942904 . Retrieved 24 March 2021.
  13. Milner-White, E. James (September 26, 2011). "Functional Capabilities of the Earliest Peptides and the Emergence of Life". Genes. 2 (4): 674. doi: 10.3390/genes2040671 . PMC   3927598 . PMID   24710286.
  14. Milner-White, E. James (September 26, 2011). "Functional Capabilities of the Earliest Peptides and the Emergence of Life". Genes. 2 (4): 678. doi: 10.3390/genes2040671 . PMC   3927598 . PMID   24710286.

Further reading