Omega loop

Last updated

The omega loop [1] [2] is a non-regular protein structural motif, consisting of a loop of six or more amino acid residues and any amino acid sequence. The defining characteristic is that residues that make up the beginning and end of the loop are close together in space with no intervening lengths of regular secondary structural motifs. It is named after its shape, which resembles the upper-case Greek letter Omega (Ω).

Contents

Structure

Omega loops, being non-regular, non-repeating secondary structural units, have a variety of three-dimensional shapes. Omega loop shapes are analyzed to identify recurring patterns in dihedral angles and overall loop shape to help identify potential roles in protein folding and function. [3] [4]

Since loops are almost always at the protein surface, it is often assumed that these structures are flexible; however, different omega loops exhibit ranges of flexibility across different time scales of protein motion and have been identified as playing a role in the folding of some proteins, including HIV-1 reverse transcriptase; [5] [6] cytochrome c; [7] [8] and nucleases. [9] [10]

Function

Omega loops can contribute to protein function. For example, omega loops can help stabilize interactions between protein and ligand, such as in the enzyme triose phosphate isomerase, [11] and can directly affect protein function in other enzymes. [12] [13] A heritable coagulation disorder is caused by a single-site mutation in an omega loop of protein C. [14]

Likewise, omega loops play an interesting role in the function of the beta-lactamases: mutations in the "omega loop region" of a beta-lactamase can change its specific function and substrate profile, [15] [16] [17] perhaps due to an important functional role of the correlated dynamics of the region. [18]

Cytochrome c

Omega loops have long been recognized also for their importance in the function and folding of the protein cytochrome c, contributing both key functional residues and well as important dynamic properties. [19] [20] [21] Many researchers have studied omega loop function and dynamics in specific protein systems using a so-called "loop swap" approach, in which loops are swapped between (usually) homologous proteins. [22] [23] [24]

Related Research Articles

<span class="mw-page-title-main">Alpha helix</span> Type of secondary structure of proteins

An alpha helix is a sequence of amino acids in a protein that are twisted into a coil.

<span class="mw-page-title-main">Beta sheet</span> Protein structural motif

The beta sheet, (β-sheet) is a common motif of the regular protein secondary structure. Beta sheets consist of beta strands (β-strands) connected laterally by at least two or three backbone hydrogen bonds, forming a generally twisted, pleated sheet. A β-strand is a stretch of polypeptide chain typically 3 to 10 amino acids long with backbone in an extended conformation. The supramolecular association of β-sheets has been implicated in the formation of the fibrils and protein aggregates observed in amyloidosis, Alzheimer's disease and other proteinopathies.

<span class="mw-page-title-main">Protein secondary structure</span> General three-dimensional form of local segments of proteins

Protein secondary structure is the local spatial conformation of the polypeptide backbone excluding the side chains. The two most common secondary structural elements are alpha helices and beta sheets, though beta turns and omega loops occur as well. Secondary structure elements typically spontaneously form as an intermediate before the protein folds into its three dimensional tertiary structure.

<span class="mw-page-title-main">CYP2E1</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450 2E1 is a member of the cytochrome P450 mixed-function oxidase system, which is involved in the metabolism of xenobiotics in the body. This class of enzymes is divided up into a number of subcategories, including CYP1, CYP2, and CYP3, which as a group are largely responsible for the breakdown of foreign compounds in mammals.

<span class="mw-page-title-main">Rieske protein</span> Protein family with an iron–sulfur center transferring electrons

Rieske proteins are iron–sulfur protein (ISP) components of cytochrome bc1 complexes and cytochrome b6f complexes and are responsible for electron transfer in some biological systems. John S. Rieske and co-workers first discovered the protein and in 1964 isolated an acetylated form of the bovine mitochondrial protein. In 1979 Trumpower's lab isolated the "oxidation factor" from bovine mitochondria and showed it was a reconstitutively-active form of the Rieske iron-sulfur protein
It is a unique [2Fe-2S] cluster in that one of the two Fe atoms is coordinated by two histidine residues rather than two cysteine residues. They have since been found in plants, animals, and bacteria with widely ranging electron reduction potentials from -150 to +400 mV.

<span class="mw-page-title-main">Catalytic triad</span> Set of three coordinated amino acids

A catalytic triad is a set of three coordinated amino acids that can be found in the active site of some enzymes. Catalytic triads are most commonly found in hydrolase and transferase enzymes. An acid-base-nucleophile triad is a common motif for generating a nucleophilic residue for covalent catalysis. The residues form a charge-relay network to polarise and activate the nucleophile, which attacks the substrate, forming a covalent intermediate which is then hydrolysed to release the product and regenerate free enzyme. The nucleophile is most commonly a serine or cysteine amino acid, but occasionally threonine or even selenocysteine. The 3D structure of the enzyme brings together the triad residues in a precise orientation, even though they may be far apart in the sequence.

Omega oxidation (ω-oxidation) is a process of fatty acid metabolism in some species of animals. It is an alternative pathway to beta oxidation that, instead of involving the β carbon, involves the oxidation of the ω carbon. The process is normally a minor catabolic pathway for medium-chain fatty acids, but becomes more important when β oxidation is defective.

A turn is an element of secondary structure in proteins where the polypeptide chain reverses its overall direction.

A beta bulge can be described as a localized disruption of the regular hydrogen bonding of beta sheet by inserting extra residues into one or both hydrogen bonded β-strands.

3<sub>10</sub> helix Type of secondary structure

A 310 helix is a type of secondary structure found in proteins and polypeptides. Of the numerous protein secondary structures present, the 310-helix is the fourth most common type observed; following α-helices, β-sheets and reverse turns. 310-helices constitute nearly 10–15% of all helices in protein secondary structures, and are typically observed as extensions of α-helices found at either their N- or C- termini. Because of the α-helices tendency to consistently fold and unfold, it has been proposed that the 310-helix serves as an intermediary conformation of sorts, and provides insight into the initiation of α-helix folding.

<span class="mw-page-title-main">Beta hairpin</span>

The beta hairpin is a simple protein structural motif involving two beta strands that look like a hairpin. The motif consists of two strands that are adjacent in primary structure, oriented in an antiparallel direction, and linked by a short loop of two to five amino acids. Beta hairpins can occur in isolation or as part of a series of hydrogen bonded strands that collectively comprise a beta sheet.

<span class="mw-page-title-main">Protein domain</span> Self-stable region of a proteins chain that folds independently from the rest

In molecular biology, a protein domain is a region of a protein's polypeptide chain that is self-stabilizing and that folds independently from the rest. Each domain forms a compact folded three-dimensional structure. Many proteins consist of several domains, and a domain may appear in a variety of different proteins. Molecular evolution uses domains as building blocks and these may be recombined in different arrangements to create proteins with different functions. In general, domains vary in length from between about 50 amino acids up to 250 amino acids in length. The shortest domains, such as zinc fingers, are stabilized by metal ions or disulfide bridges. Domains often form functional units, such as the calcium-binding EF hand domain of calmodulin. Because they are independently stable, domains can be "swapped" by genetic engineering between one protein and another to make chimeric proteins.

Protein G is an immunoglobulin-binding protein expressed in group C and G Streptococcal bacteria much like Protein A but with differing binding specificities. It is a ~60-kDA cell surface protein that has found application in purifying antibodies through its binding to the Fab and Fc region. The native molecule also binds albumin, but because serum albumin is a major contaminant of antibody sources, the albumin binding site has been removed from recombinant forms of Protein G. This recombinant Protein G, either labeled with a fluorophore or a single-stranded DNA strand, was used as a replacement for secondary antibodies in immunofluorescence and super-resolution imaging.

<span class="mw-page-title-main">VPS26A</span> Protein-coding gene in the species Homo sapiens

Vacuolar protein sorting-associated protein 26A is a protein that in humans is encoded by the VPS26A gene.

<span class="mw-page-title-main">CYP4F2</span> Protein-coding gene in the species Homo sapiens

Leukotriene-B(4) omega-hydroxylase 1 is an enzyme protein involved in the metabolism of various endogenous substrates and xenobiotics. The most notable substrate of the enzyme is leukotriene B4, a potent mediator of inflammation. The CYP4F2 gene encodes the enzyme in humans.

<span class="mw-page-title-main">Metallo-beta-lactamase protein fold</span>

The metallo-β-lactamase (MBL) superfamily constitutes a group of proteins found in all domains of life that share a characteristic αββα fold with the ability to bind transition metal ions. Such metal binding sites may have divalent transition metal ions like Zn(II), Fe(II)/Fe(III) and Mn(II), and are located at the bottom of a wide cleft able to accommodate diverse substrates. The name was adopted after the first members of the superfamily to be studied experimentally: a group of zinc-dependent hydrolytic enzymes conferring bacterial resistance to β-lactam antibiotics. These zinc-β-lactamases (ZBLs) inactivate β-lactam antibiotics through hydrolysis of the β-lactam ring. Early studies on MBLs were conducted on the enzyme βLII isolated from strain 569/H/9 of Bacillus cereus. It was named βLII because it was the second β-lactamase shown to be produced by the bacterium; the first one, βLI, was a non-metallic β-lactamase, i.e., insensitive to inhibition with EDTA.

β turns are the most common form of turns—a type of non-regular secondary structure in proteins that cause a change in direction of the polypeptide chain. They are very common motifs in proteins and polypeptides. Each consists of four amino acid residues. They can be defined in two ways:

  1. By the possession of an intra-main-chain hydrogen bond between the CO of residue i and the NH of residue i+3;
  2. By having a distance of less than 7Å between the Cα atoms of residues i and i+3.
<span class="mw-page-title-main">Protein dynamics</span>

Proteins are generally thought to adopt unique structures determined by their amino acid sequences. However, proteins are not strictly static objects, but rather populate ensembles of conformations. Transitions between these states occur on a variety of length scales and time scales , and have been linked to functionally relevant phenomena such as allosteric signaling and enzyme catalysis.

SCHEMA is a computational algorithm used in protein engineering to identify fragments of proteins that can be recombined without disturbing the integrity of the proteins' three-dimensional structure. The algorithm calculates the interactions between a protein's different amino acid residues to determine which interactions may be disrupted by swapping structural domains of the protein. By minimizing these disruptions, SCHEMA can be used to engineer chimeric proteins that stably fold and may have altered function relative to their parent proteins. SCHEMA algorithm has been applied in the recombinant libraries of distantly related β-lactamases.

Jacquelyn S. (Jacque) Fetrow is a computational biologist, college administrator, and the 15th president of Albright College. Previously, she served as Provost, Vice President of Academic Affairs, and Professor of Chemistry at the University of Richmond, in Richmond, Virginia. Prior to that appointment, she served as Dean of the College at Wake Forest University in Winston-Salem, North Carolina. She also co-founded a company, GeneFormatics, for which she served as Director and Chief Scientific Officer for four years.

References

  1. Leszczynski, JF; Rose, GD (14 Nov 1986). "Loops in globular proteins: a novel category of secondary structure". Science. 234 (4778): 849–855. Bibcode:1986Sci...234..849L. doi:10.1126/science.3775366. PMID   3775366.
  2. Fetrow, JS (June 1995). "Omega loops: nonregular secondary structures significant in protein function and stability". FASEB J. 9 (9): 708–17. doi:10.1096/fasebj.9.9.7601335. PMID   7601335. S2CID   23775489.
  3. Pal, M; Dasgupta, S (1 Jun 2003). "The nature of the turn in omega loops of proteins". Proteins. 51 (4): 591–606. doi:10.1002/prot.10376. PMID   12784218. S2CID   44815936.
  4. Dhar, J; Chakrabarti, P (Jun 2015). "Defining the loop structures in proteins based on composite β-turn mimics". Protein Eng Des Sel. 28 (6): 153–61. doi: 10.1093/protein/gzv017 . PMID   25870305.
  5. Mager, PP (Dec 1996). "Molecular simulation of the folding patterns of the omega-loop (Tyr181 to Tyr188) of HIV-1 reverse transcriptase". Drug des Discov. 14 (3): 213–23. PMID   9017364.
  6. Mager, PP; Walther, H (Dec 1996). "A hydrophilic omega-loop (Tyr181 to Tyr188) in the nonsubstrate binding area of HIV-1 reverse transcriptase". Drug des Discov. 14 (3): 225–39. PMID   9017365.
  7. Maity, H; Rumbley, JN; Englander, SW (1 May 2006). "Functional role of a protein foldon--an Omega-loop foldon controls the alkaline transition in ferricytochrome c". Proteins. 63 (2): 349–55. CiteSeerX   10.1.1.596.3784 . doi:10.1002/prot.20757. PMID   16287119. S2CID   38183696.
  8. Caroppi, P; Sinibaldi, F; Santoni, E; Howes, BD; Fiorucci, L; Ferri, T; Ascoli, F; Smulevich, G; Santucci, R (Dec 2004). "The 40s Omega-loop plays a critical role in the stability and the alkaline conformational transition of cytochrome c". J Biol Inorg Chem. 9 (8): 997–1006. doi:10.1007/s00775-004-0601-9. hdl: 2108/34631 . PMID   15503233. S2CID   2130725.
  9. Vu, ND; Feng, H; Bai, Y (30 Mar 2004). "The folding pathway of barnase: the rate-limiting transition state and a hidden intermediate under native conditions". Biochemistry. 43 (12): 3346–56. doi:10.1021/bi0362267. PMID   15035606.
  10. Wang, X; Wang, M; Tong, Y; Shan, L; Wang, J (Oct 2006). "Probing the folding capacity and residual structures in 1-79 residues fragment of staphylococcal nuclease by biophysical and NMR methods". Biochimie. 88 (10): 1343–55. doi:10.1016/j.biochi.2006.05.002. PMID   17045725.
  11. Xiang, J; Jung, JY; Sampson, NS (14 Sep 2004). "Entropy effects on protein hinges: the reaction catalyzed by triosephosphate isomerase". Biochemistry. 43 (36): 11436–45. doi:10.1021/bi049208d. PMID   15350130.
  12. Neuhaus, FC (Sep 2011). "Role of the omega loop in specificity determination in subsite 2 of the D-alanine:D-alanine (D-lactate) ligase from Leuconostoc mesenteroides: a molecular docking study". J Mol Graph Model. 30: 31–7. doi:10.1016/j.jmgm.2011.06.002. PMID   21727015.
  13. Sampson, NS; Kass, IJ; Ghoshroy, KB (21 Apr 1998). "Assessment of the role of an omega loop of cholesterol oxidase: a truncated loop mutant has altered substrate specificity". Biochemistry. 37 (16): 5770–8. doi:10.1021/bi973067g. PMID   9548964.
  14. Preston, RJ; Morse, C; Murden, SL; Brady, SK; O'Donnell, JS; Mumford, AD (Mar 2009). "The protein C omega-loop substitution Asn2Ile is associated with reduced protein C anticoagulant activity". Br J Haematol. 144 (6): 946–53. doi:10.1111/j.1365-2141.2008.07550.x. PMID   19133979. S2CID   1618500.
  15. Levitt, PS; Papp-Wallace, KM; Taracila, MA; Hujer, AM; Winkler, ML; Smith, KM; Xu, Y; Harris, ME; Bonomo, RA (14 Sep 2013). "Exploring the role of a conserved class A residue in the Ω-Loop of KPC-2 β-lactamase: a mechanism for ceftazidime hydrolysis". J Biol Chem. 287 (38): 31783–93. doi: 10.1074/jbc.M112.348540 . PMC   3442512 . PMID   22843686.
  16. Stojanoski, V; Chow, DC; Hu, L; Sankaran, B; Gilbert, HF; Prasad, BV; Palzkill, T (17 Apr 2015). "A triple mutant in the Ω-loop of TEM-1 β-lactamase changes the substrate profile via a large conformational change and an altered general base for catalysis". J Biol Chem. 290 (16): 10382–94. doi: 10.1074/jbc.M114.633438 . PMC   4400348 . PMID   25713062.
  17. Dutta, M; Kar, D; Bansal, A; Chakraborty, S; Ghosh, AS (Apr 2015). "A single amino acid substitution in the Ω-like loop of E. coli PBP5 disrupts its ability to maintain cell shape and intrinsic beta-lactam resistance". Microbiology. 161 (Pt 4): 895–902. doi: 10.1099/mic.0.000052 . PMID   25667006.
  18. Brown, JR; Livesay, DR (27 May 2015). "Flexibility Correlation between Active Site Regions Is Conserved across Four AmpC β-Lactamase Enzymes". PLOS ONE. 10 (5): e0125832. Bibcode:2015PLoSO..1025832B. doi: 10.1371/journal.pone.0125832 . PMC   4446314 . PMID   26018804.
  19. McClelland, LJ; Seagraves, SM; Khan, MK; Cherney, MM; Bandi, S; Culbertson, JE; Bowler, BE (Jul 2015). "The response of Ω-loop D dynamics to truncation of trimethyllysine 72 of yeast iso-1-cytochrome c depends on the nature of loop deformation". J Biol Inorg Chem. 20 (5): 805–19. doi:10.1007/s00775-015-1267-1. PMC   4485566 . PMID   25948392.
  20. Krishna, MM; Lin, Y; Rumbley, JN; Englander, SW (1 Aug 2003). "Cooperative omega loops in cytochrome c: role in folding and function". J Mol Biol. 331 (1): 29–36. doi:10.1016/s0022-2836(03)00697-1. PMID   12875833.
  21. Fetrow, JS; Dreher, U; Wiland, DJ; Schaak, DL; Boose, TL (Apr 1998). "Mutagenesis of histidine 26 demonstrates the importance of loop-loop and loop-protein interactions for the function of iso-1-cytochrome c". Protein Sci. 7 (4): 994–1005. doi:10.1002/pro.5560070417. PMC   2143970 . PMID   9568906.
  22. Takehara, S; Onda, M; Zhang, J; Nishiyama, M; Yang, X; Mikami, B; Lomas, DA (24 Apr 2009). "The 2.1-A crystal structure of native neuroserpin reveals unique structural elements that contribute to conformational instability". J Mol Biol. 388 (1): 11–20. doi:10.1016/j.jmb.2009.03.007. PMID   19285087.
  23. Murphy, ME; Fetrow, JS; Burton, RE; Brayer, GD (Sep 1993). "The structure and function of omega loop A replacements in cytochrome c". Protein Sci. 2 (9): 1429–40. doi:10.1002/pro.5560020907. PMC   2142463 . PMID   8401228.
  24. Fetrow, JS; Cardillo, TS; Sherman, F (1989). "Deletions and replacements of omega loops in yeast iso-1-cytochrome c". Proteins. 6 (4): 372–81. doi:10.1002/prot.340060404. PMID   2560195. S2CID   25525703.